Open Access
MATEC Web of Conferences
Volume 56, 2016
2016 8th International Conference on Computer and Automation Engineering (ICCAE 2016)
Article Number 02006
Number of page(s) 5
Section Image Processing and Application
Published online 26 April 2016
  1. J. Shotton, A. Fitzgibbon, M. Cook, T. Sharp, M. Finocchio, R. Moore, A. Kipman, A. Blake, 2011. In: Proc. of the 2011 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 1297–1304. [Google Scholar]
  2. W.Q. Li, Z.Y. Zhang, Z.C. Liu. IEEE Conf. on Computer Vision and Pattern Recognition Workshops, 2010, pp. 9–14. [Google Scholar]
  3. L. Xia, C. Chen, J. Aggarwal. IEEE Conf. on Computer Vision and Pattern Recognition Workshops, 2012, pp. 20–27. [Google Scholar]
  4. X.D. Yang, C.Y. Zhang, Y.L. Tian. Proc. of the 20th ACM Int’l Conf. on Multimedia,2012, pp. 1057–1060, (MM ‘12). [Google Scholar]
  5. N. Dalaland, and B. Triggs. Histograms of oriented gradients for human detection. In CVPR, 2005. [Google Scholar]
  6. Zhang, L.E. Parker. 4-dimensional local spatialtemporal features for human activity recognition. IEEERSJ Int’l Conf. on Intelligent Robots and Systems, 2011, pp.2044–2049. [Google Scholar]
  7. Zheng, Z. Jiang, J. Phillips, and R. Chellappa. Crossview action recognition via a transferable dictionary pair. In BMVC, 2012. [Google Scholar]
  8. A. F. Bobick and J. W. Davis. Pattern Analysis and Machine Intelligence, IEEE Transactions on, 23(3):257–267, 2001. [Google Scholar]
  9. B. Liang and L.H. Zhang, 3D Motion Trail Model based Pyramid Histograms of Oriented Gradient for Action Recognition. 22nd International Conference on Pattern Recognition 2014. [Google Scholar]
  10. J. Laptev, M. Marszalek, C. Schmid, and B. Rozenfeld. Learning Realistic Human Actions from Movies. In CVPR, 2008. [Google Scholar]
  11. T. Ojala, M. Pietikaimen, and T. Maenpaa. Multiresolution gray-scale and rotation invariant texture classifications on Pattern Analysis and Machine Intelligence, 24(7):971–987,(2002).1,3,5. [Google Scholar]
  12. X.D. Yang, Y.L. Tian. Effective 3d action recognition using EigenJoints. J. Vis. Commun. Image Represent. 25 (2014) 2–11. [CrossRef] [Google Scholar]
  13. L. Xia, J. Aggarwal. Spatial-temporal depth cuboids similarity feature for activity recognition using depth camera. IEEE Conf. On Computer Vision and Pattern Recognition, 2013, pp, 2834–2841. [Google Scholar]
  14. J. Wang, Z. Liu, J. Chorowski, Z. Chen, and Y. Wu. Robust 3D Action Recognition with Random Occupancy Patterns. In ECCV,2012. [Google Scholar]
  15. A. Vieira, E. Nascimento, G. Oliveira, Z. Liu, and M. Campos. STOP: Space-Time Occupancy Patterns for 3D Action Recognition from Depth Map Sequences. In CIARP,2012. [Google Scholar]
  16. J. Wang, Z.C. Liu, Y. Wu, J.S. Yuan. Mining action-let ensemble for action recognition with depth cameras. IEEE Conf. on Computer Vision and, Pattern Recognition, 2012, pp. 1290–1297. [Google Scholar]
  17. O. Oreifej and Z. Liu. HON4D: Histogram of Oriented 4DNormals for Activity Recognition from Depth Sequences. In CVPR, 2013. [Google Scholar]
  18. C. Wang, Y. Wang and A. Yuille. An Approach to Pose based Action Recognition. In CVPR , 2013. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.