Open Access
MATEC Web of Conferences
Volume 47, 2016
The 3rd International Conference on Civil and Environmental Engineering for Sustainability (IConCEES 2015)
Article Number 01020
Number of page(s) 7
Section Cementitious, Concrete and Sustainable Materials
Published online 01 April 2016
  1. H.J. Chen, L. Wang and W.Y. Chiu, Chelation and solvent effect on the preparation of titania colloids, Materials Chemistry and Physics, 101, 12-19, (2007). [CrossRef] [Google Scholar]
  2. D.S. Xu, J.M. Li, Y.X. Yu and J.J. Li, From titanates to TiO2 nanostructures: Controllable synthesis, growth mechanism, and applications, Science China Chemistry, 55(11), 2334-2345, (2011). [Google Scholar]
  3. H. Gao, J. Tian, H. Zhu, F. Tan and W. Zhang, Effects of Fe doping on the optical and magnetic properties of TiO2 films deposited on Si substrates by sol-gel route, J. of Sol-Gel Science and Technology, 74, 521-527, (2015). [CrossRef] [Google Scholar]
  4. A.K. Prasad, F. Nose, N.C. Raut, S. Tripura Sundari, M. Kamruddin, S. Dash and A.K. Tyagi, Phase selective gas sensing properties of nanostructured TiO2 thin films, Proc. of Int. Conf. on Nanoscience, Engineering and Technology, IEEE, 532-535, (2011). [Google Scholar]
  5. B. Ding, C.K. Kim, H.Y. Kim, M.K Seo and S.J Park, Titanium nanofibers prepared by using electrospinning method, Fibers and Polymers, 5(2), 105-109, (2004). [CrossRef] [Google Scholar]
  6. S. Mishra and S.P. Ahrenkiel, Synthesis and characterization of electrospun nanocomposite TiO2 nanofibers with Ag nanoparticles for photocatalysis applications, J. of Nanomaterials, 2012(16), 1-6, (2012). [Google Scholar]
  7. W. Nuansing, S. Ninmuang, W. Jarenboon, S. Maensiri and S. Seraphin, Structural characterization and morphology of electrospun TiO2 nanofibers, Material Science and Engineering B, 131, 147-155, (2006). [CrossRef] [Google Scholar]
  8. S. Watson, D. Beydoun, J. Scott and R. Amal, Preparation of nanosized crystalline TiO2 particles at low temperature for photocatalysis, Journal of Nanoparticle Research, 6, 193-207, (2004). [Google Scholar]
  9. R. Chandrasekar, L. Zhang, J.Y. Howe, N.E. Hedin, Y. Zhang and H. Fong, Fabrication and characterization of electrospin titania nanofibers, J. of Materials Science, 44, 1198-1205 (2009). [CrossRef] [Google Scholar]
  10. B.H.Q. Dang, M. Rahman, D. MacElroy and D.P. Dowling, Conversion of amorphous TiO2 coating into their crystalline form using a novel microwave plasma treatment, Surface and Coatings Technology, 2015, 235-240, (2011). [CrossRef] [Google Scholar]
  11. B. Caratao, E. Carneiro, P. Sa, B. Almeida and S. Carvalho, Properties of electrospun TiO2 nanofibers, Journal of Nanotechnology, 2014, 1-5, (2014). [CrossRef] [Google Scholar]
  12. M. Mali, S. An, M. Liou, S.S. Al-Deyab and S.S. Yoon, Photoelectrochemial solar water splitting using electrospun TiO2 nanofibers, Applied Surface Science, 328, 109-114, (2015). [CrossRef] [Google Scholar]
  13. W.H. Jung, N.S. Kwak, T.S. Hwang and K.B. Yi, Preparation of highly porous TiO2 nanofibers for dye-sensitized solar cells (DSSCs) by electro-spinning, Applied Surface Science, 261, 343-352, (2012). [CrossRef] [Google Scholar]
  14. T. Mathews, R.P. Antony, P.K. Ajikumar, S. Chakraborty, S. Dash, A.K. Tyagi, Fabrication of TiO2 nanofibers by electrospinning technique, Proc. of Int. Conf. on Nanoscience, Engineering and Technology, IEEE, 540-542, (2011) [Google Scholar]
  15. M. Boehme and W. Ensinger, Mixed phase anatase/rutile titanium dioxide nanotubes for enhanced photocatalytic degradation of methylene-blue, Nano-Micro Letters, 3(4), 236-241, (2011). [CrossRef] [Google Scholar]
  16. N. Sarlak, M.A.F. Nejad, S. Shakhesi and K. Shabani, Effects of electrospinning on titanium dioxide nanofibers diameter and morphology: An investigation by Box-Wilson central composite design (CCD), Chemical Engineering J., 210, 410-416, (2010). [CrossRef] [Google Scholar]
  17. Z.M. Huang, Y.Z. Zhang, M. Kotaki and S. Ramakrishna, A review on polymer nanofibers by electrospinning and their applications in nanocomposites, Composites Science and Technology, 63, 2223-2253, (2003). [Google Scholar]
  18. N. Bhardwaj and S.C. Kundu, Electrospinning: A fascinating fiber fabrication technique, Biotechnology Advances, 28, 325-347, (2010). [Google Scholar]
  19. N.M. Tikekar, J.J. Lannutti, Effects of humidity on titania-based polyvinylpyrolidone (PVP) electrospun fibers, Ceramics International 38, 4057-4064, (2012). [CrossRef] [Google Scholar]
  20. C. Wang, X. Zhang, C. Shao, Y. Zhang, J. Ying, P. Sun, X. Liu, H. Liu, T. Xie and D. Wang, Rutile TiO2 nanowires on anatase TiO2: A branched heterostructured photocatalysts via interfaceassisted fabrication approach, J. of Colloid and Interface Science, 363, 157-164, (2011). [CrossRef] [Google Scholar]
  21. .D. Li and Y. Xia, Fabrication of titania nanofibers by electrospinning, Nano Letters, 4(3), 555-560, (2003). [CrossRef] [Google Scholar]
  22. D. Sabba, S, Agarwala, S.S. Pramana and S. Mhaisalkar, A maskless synthesis of TiO2-nanofiberbased hierarchical structures for solid-state dye-sensitized solar cells with improved performance, Nanoscale Research Letters, 9(14), 1-9, (2014). [CrossRef] [Google Scholar]
  23. R. Nirmala, H.K. Kim, R. Navamathavan, C. Yi, J.J. Won, K. Jeon, A. Yousef, R. Afeesh and M. El-Newehy, Photocatalytic activities of electrospun tin oxide doped titanium dioxide nanofibers, Ceramics Int., 38, 4533-4540, (2012). [CrossRef] [Google Scholar]
  24. N.A.M Barakat, A.M. Hamza, S.S. Al-Deyab, A. Qurashi and H.Y. Kim, Titanium-based polymeric electrospun nanofiber mats as a novel organic semiconductor, Materials Science and Engineering B, 177, 34-42, (2012). [CrossRef] [Google Scholar]
  25. J.Y. Park and I.H. Lee, Characterization and morphology of prepared titanium dioxide nanofibers by electrospinning, J. of Nanoscience and Nanotechnology, 10, 3402-3405, (2010). [CrossRef] [Google Scholar]
  26. H. Jamil, S.S. Batool, Z. Imran, M. Usman, M.A. Rafiq, M. Willander and M.M. Hassan, Electrospun titanium diaoxide nanofibers humidity sensors with high sensitivity, Ceramics Int., 38, 2437-2441, (2012). [CrossRef] [Google Scholar]
  27. X. Wang, R.A. Gittens, R. Song, R. Tannenbaum, R. Oliver-navarrete, Z. Schwartz, H. Chen and B.D. Boyan, Effects of structural properties of electrospun TiO2 nano-fiber meshes on their osteogenic potential, Acta Biomater, 8(2), 878-885, (2012). [CrossRef] [Google Scholar]
  28. M.Y. Song, D.K. Kim, K.J. Ihn, S.M. Jo and D.Y. Kim, Electrospun TiO2 electrodes for dyesensitized solar cells, Nanotechnology, 15, 1861-1865, (2004). [CrossRef] [Google Scholar]
  29. P. Heikkil√§ and A. Harlin, Parameter study of electrospinning of polyamide-6, European Polymer J., 44, 3067-3079, (2008). [CrossRef] [Google Scholar]
  30. D.Y Lee, B.Y. Kim, S.J. Lee, M.H. Lee, Y.S. Song and J.Y. lee, Titania nanofibers prepared by electrospinning, J. of the Korean Physical Society, 48 (6), 1686-1690, (2006). [Google Scholar]
  31. Z.S. Tang, N. Bolong, I. Saad and F.M. Said, Effects of supplied voltage and flow rate on morphology of electrospun titanium oxide nanofibers, Proceedings of Hong Kong International Conference of Engieering and Applied Sciences, Hong Kong, (2013). [Google Scholar]
  32. C. Tekmen, A, Suslu and U. Cocen, Titania nanofibers prepared by electrospinning, Materials Letters, 62, 4470-4472, (2008). [CrossRef] [Google Scholar]
  33. S. Zargham, S. Bazgir, A. Tavakoli, A.S. Rashidi and R. Damerchely, The effect of flow rate on morphology and deposition area of electrospun nylon 6 nanofibers, J. of Engineered Fibers and Fabrics, 7(4), 42-49, (2012). [Google Scholar]
  34. H. Park and W.M. Sigmund, Thermally controlled crystallization of electrospun TiO2 nanofibers, Advances in Science and Technology, 71, 80-85, (2010). [CrossRef] [Google Scholar]
  35. J.Y. Park and I.H. Lee, Characterizations and morphology of prepared titanium oxide nanofibers by electrospinning, J. of Nanoscience and Nanotechnology, 10, 3402-3405, (2010). [CrossRef] [Google Scholar]
  36. L. Francis, A.S. Nair, R. Jose, S. Ramakrishna, V. Thavasi and E. Marsano, Fabrication and characterization of dye-sensitized solar cells from rutile nanofibers and nanorods, Energy, 36, 627-632, (2011). [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.