Open Access
Issue
MATEC Web of Conferences
Volume 47, 2016
The 3rd International Conference on Civil and Environmental Engineering for Sustainability (IConCEES 2015)
Article Number 01017
Number of page(s) 5
Section Cementitious, Concrete and Sustainable Materials
DOI https://doi.org/10.1051/matecconf/20164701017
Published online 01 April 2016
  1. P.T. Laursen, N.A. Herskedal, D.C. Jansen and B. Qu, Interlocking compressed earth blocks walls: Out-of-plane structural response, 15th World Conference on Earthquake Engineering, Lisbon, Portugal, 71-81, (2012). [Google Scholar]
  2. S. Maini, Earthen Architecture in the World, Auroville Earth Institute, (2010). <retrieved from http://www.earth-auroville.com/> (accessed on November, 2015). [Google Scholar]
  3. K.B. Anand and K. Ramamurthy, Development and evaluation of hollow concrete interlocking block masonry system, The Masonry Society Journal, 23(1), 11-19, (2005). [Google Scholar]
  4. F.V. Riza, I.A. Rahman and A.M.A. Zaidi, A brief review of compressed stabilized earth brick (CSEB), International Conference on Science and Social Research, Kuala Lumpur, 999-1004, (2010). [Google Scholar]
  5. P. Jaquin, How mud bricks work using unsaturated soil mechanics principles to explain the material properties of earth buildings, EWB-UK National Research Conference, United Kingdom, 49-51, (2010). [Google Scholar]
  6. G. Wilson, S.L. Barbour and D.G. Fredlund, The prediction of evaporative fluxes from unsaturated soil surfaces, Alonso and Delage (eds), France, 423-429, (1995). [Google Scholar]
  7. P. Jaquin, Analysis of historic rammed earth construction, PhD Thesis, University of Durham, United Kingdom, (2008). [Google Scholar]
  8. J.E. Oti, J.M. Kinuthia and J. Bai, Engineering properties of unfired clay masonry bricks, Journal of Engineering Geology, 107(3-4), 130-139, (2009). [CrossRef] [Google Scholar]
  9. P.J. Walker, Strength and erosion characteristics of earth blocks and earth block masonry, Journal of Materials in Civil Engineering, 16(5), 497-506, (2004). [CrossRef] [Google Scholar]
  10. A. Guettala, A. Abibsi and H. Houari, Durability study of stabilized earth concrete under both laboratory and climatic conditions exposure, Journal of Construction and Building Materials, 20(3), 119-127, (2006). [CrossRef] [Google Scholar]
  11. E.A. Adam and A.R.A. Agib, Compressed stabilised earth block manufacture in Sudan, Graphoprint for the United Nations Educational, Scientific and Cultural Organization, France, Paris, (2001). [Google Scholar]
  12. D.E. Gooding and T.H. Thomas, The potential of cement-stabilised building blocks as an urban building material in developing countries, Overseas Development Administration, United Kingdom, (1995). [Google Scholar]
  13. L. Keefe, Earth Building: Methods and Materials, Repair and Conservation, Taylor and Francis, New York, 145-156, (2005). [Google Scholar]
  14. R. Siddique and N.K. Chahal, Effect of ureolytic bacteria on concrete properties, Journal of Construction and Building Materials, 25(10), 3791-3801, (2011). [CrossRef] [Google Scholar]
  15. H.S. Chafetz and C. Buczynski, Bacterially induced lithification of microbial mats, Journal of Palaios, 7, 277–293, (1992). [CrossRef] [Google Scholar]
  16. H. Knorre and K.E. Krumbein, Bacterial Calcification, Book of Microbial Sediments, Springer, Berlin, 25–31, (2000). [CrossRef] [Google Scholar]
  17. F. Hammes, N. Boon, J. de Villiers, W. Verstraete and S.D. Siciliano, Strain-specific ureolytic microbial calcium carbonate precipitation, Applied and Environmental Microbiology, 69, 4901–4909, (2003). [CrossRef] [Google Scholar]
  18. M.P. Harkes, L.A Van Paassen, J.L. Booster, V.S. Whiffin and M.C.M. Van Loosdrecht, Fixation and distribution of bacterial activity in sand to induce carbonate precipitation for ground reinforcement, Journal of Ecological Engineering, 36(2), 112–117, (2010). [CrossRef] [Google Scholar]
  19. W. De Muynck, N. De Belie and W. Verstraete, Microbial carbonate precipitation in construction materials: A review, Journal of Ecological Engineering, 36(2), 118–136, (2010). [CrossRef] [Google Scholar]
  20. S. Stocks-Fischer, J.K. Galinat and S.S. Bang, Microbiological precipitation of CaCO3, Journal of Soil Biology and Biochemistry, 31(11), 1563-1571, (1999). [CrossRef] [Google Scholar]
  21. N.K. Dhami, M.S. Reddy and A. Mukherjee, Improvement in strength properties of ash bricks by bacterial calcite, Journal of Ecological Engineering, 39, 31-35, (2012). [CrossRef] [Google Scholar]
  22. S. Amidi and J. Wang, Surface treatment of concrete bricks using calcium carbonate, Journal of Construction and Building Materials, 80, 273-278, (2015). [CrossRef] [Google Scholar]
  23. D. Bernadi, J.T. Dejong, B.M. Montoya and B.C. Mattinez, Bio-bricks: Biologically cemented sandstone bricks, Journal of Construction and Building Material, 55, 462-469, (2014). [CrossRef] [Google Scholar]
  24. A. Mukherjee, N.K. Dhami, B.V.V Reddy and M.S. Reddey, Bacterial calcification for enhancing performance of low embodied energy soil-cement bricks, Third International Conference on Sustainable Construction Materials and Technology, Kyoto, (2013). [Google Scholar]
  25. W. De Muynck, D. Debrouwer, N. De Belie and W. Verstraete, Bacterial carbonate precipitation improves the durability of cementitious materials, Journal of Cement and Concrete Research, 38(7), 1005-1014, (2008). [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.