Open Access
Issue
MATEC Web of Conferences
Volume 45, 2016
2016 7th International Conference on Mechatronics and Manufacturing (ICMM 2016)
Article Number 04006
Number of page(s) 4
Section Machinery manufacturing and automation
DOI https://doi.org/10.1051/matecconf/20164504006
Published online 15 March 2016
  1. D. Jindrich, Z. Yan, B. Theodore, et al. Non-linear viscoelastic models predict fingertip pulp force displacement characteristics during voluntary tapping. J Biomech, 2003, 36(4): 497–503. [Google Scholar]
  2. J. Wu, R. Dong, W. Smutz, et al. Dynamic interaction between a fingerpad and a flat surface: experiments and analysis. Med Eng Phys, 2003, 25(3): 397–406. [Google Scholar]
  3. J. Phillips and K. Johnson. Tactile spatial resolution III. a continuum mechanics model of skin predicting mechano receptor responses to bars, edges, gratings. J Neurophysiol, 1981, 46(6): 1204–1225. [Google Scholar]
  4. M. Srinvasan, D. Dandekar. An investigation of the mechanics of tactile sense using two-dimensional models of the primate fingertip. J Biomech Eng, 1996, 118(1): 48–55. [Google Scholar]
  5. J. Wu, R. Dong. Analysis of the contact interactions between fingertips and objects with different surface curvatures. Proc IMech E, 2005, 219(9): 89–103. [CrossRef] [Google Scholar]
  6. T. Maeno, K. Kobayashi and N. Yamazaki. Relationship between the structure of human finger tissue and the location of tactile receptors. JSME International Journal, 1998, 41(1): 94–100. [Google Scholar]
  7. Y. Zheng and A. Mak. An ultrasound indentation system for biomechanical properties assessment of soft tissues in vivo. IEEE Biomed Eng, 1996;43:912–918. [Google Scholar]
  8. M. Rubin, S. Bodner and N. Binur. An elastic viscoplastic model for excised facial tissues. ASME J Biomech Eng, 1998;120:686–9. [CrossRef] [Google Scholar]
  9. A.W. Wan. Biaxial tension test of human skin in vivo. Biomed Mater Eng, 1994;4:473–86. [Google Scholar]
  10. Y. C. Fung. Biomechanics: Mechanical Properties of Living Tissues. Springer, New York, 1984. [Google Scholar]
  11. J. Zhang, A. Mak, Huang L. A large deformation biomechanical model for pressure ulcers. ASME J Biomech Eng, 1997,119: 406–8. [CrossRef] [Google Scholar]
  12. V.C. Mow, S.C. Kuei and W.M. Lai, Armstrong CG. Biphasic creep and stress relaxation of articular cartilage: theory and experiment. ASME J Biomech Eng, 1980, 102:73–84. [Google Scholar]
  13. J.Z. Wu, R.G. Dong, S. Rakheja, et al. A structural fingertip model for simulating of the biomechanics of tactile sensation. Medical Engineering & Physics 26 (2004): 165–175. [Google Scholar]
  14. J.Z. Wu and R.G. Dong, D.E. Welcome. Analysis of the point mechanical impedance of fingerpad in vibration. Medical Engineering & Physics 28 (2006): 816–826. [Google Scholar]
  15. M. Srinivasan. Surface deflection of primate fingertip under line load. J Biomech, 1989, 22:343–9. [Google Scholar]
  16. K. Dandekar, B. Raju and M. Srinivasan. 3-d finite-element models of human and monkey fingertips to investigate the mechanics of tactile sense. J Biomech Eng, 2003, 125(5): 682–691. [Google Scholar]
  17. K. O. Johnson. The role and functions of cutaneous mechanoreceptors. Curr Opin Neurobiol, 2001, 11(4): 455–461. [CrossRef] [Google Scholar]
  18. K. O. Johnson, T. Yoshioka and F. V. Bermudez. Tactile functions of mechano receptive afferents innervating the hand. J Clin Neurophysiol, 2000, 17(6): 539–558. [Google Scholar]
  19. A. B. Vallbo and R. S. Johansson. Properties of cutaneous mechanoreceptors in the human hand related to touch sensation. Human Neurobiology, 1984, 3(1): 3–14. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.