Open Access
Issue
MATEC Web of Conferences
Volume 45, 2016
2016 7th International Conference on Mechatronics and Manufacturing (ICMM 2016)
Article Number 01001
Number of page(s) 5
Section Materials processing and Applications
DOI https://doi.org/10.1051/matecconf/20164501001
Published online 15 March 2016
  1. M. Szary, The analytical model of rheological fluid for vibration and noise control, Proceedings of Meetings on Acoustics, Montreal, Canada, 19(2013):1–8. [Google Scholar]
  2. S. Malinnovsky and D.M. Donskoy, Electro-magnetically controlled acoustic metamaterials with adaptive properties, Journal of the Acoustical Society of America, 132(2012):2866–2872. [CrossRef] [Google Scholar]
  3. D.M. Donskoy, V.S. Malinovsky, Broadband acoustic metamaterials with electro-magnetically controlled properties, Proceedings of Meetings on Acoustics, Montreal, Canada, 19(2013):1–8. [Google Scholar]
  4. T.R. Howarth, F. Fratantonio, J.E. Boisvert, A. Bruno, C.L. Scandrett, W.M. Wynn and P.S. Davis, Acoustic behavior of magnetorheological fluids in magnetic fields, Journal of the acoustical society of America, 13(2011):2359. [CrossRef] [Google Scholar]
  5. M. Shen and Q.B. Huang, Acoustic properties of magnetorheological fluids under magnetic fields, Applied Mechanical and Materials, 721(2015):818–823. [CrossRef] [Google Scholar]
  6. M.A. Biot, Theory of propagation of elastic waves in a fluid-saturated porous solid, Part I:Low frequency range, Journal of the Acoustical Society of America, 28,(1956):168–178. [CrossRef] [MathSciNet] [Google Scholar]
  7. M.A. Biot, Theory of propagation of elastic waves in a fluid-saturated porous solid, Part II:Higher frequency range, Journal of the Acoustical Society of America, 28(1956):179–191. [CrossRef] [Google Scholar]
  8. R.D. Stoll, Acousitc waves in ocean sediments, Geophysics, 42,4,(1977):715. [CrossRef] [Google Scholar]
  9. D.L. Johnson, J. Koplik and R. Dashen, Theory of dynamic permeability and tortuosity in fluid-saturated porous media, Journal of Fluid Mechanics, 176(1087):379–402. [CrossRef] [Google Scholar]
  10. K.L. Williams, An effective density fluid model for acoustic propagation in sediments derived from Biot theory, Journal of the Acoustical Society of America, 110,5(2001),2276–2280. [CrossRef] [PubMed] [Google Scholar]
  11. K.L. Williams and D.R. Jackson, Bistatic bottom scattering:Modle, experimens, and model/data comparison, Journal of the Acoustical Society of America, 103,1,(1998):169–181. [CrossRef] [Google Scholar]
  12. K.L Willams, D.R Jackson, E.I Thorsos, Tang and J. S.G Schock, Comparison of sound speed and attenuation measured in a sandy sediment predictions based on the Biot theory of porous media, IEEE Journal Ocean Engineering, 27,3(2002): 413–428. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.