Open Access
MATEC Web of Conferences
Volume 44, 2016
2016 International Conference on Electronic, Information and Computer Engineering
Article Number 01032
Number of page(s) 5
Section Computer, Algorithm, Control and Application Engineering
Published online 08 March 2016
  1. RIVEST R, SHAMIR A, ALDEMAN L. A method for obtaining digital signatures and public-key cryptosystems[J]. Communications of the ACM, 1978, 21 (2): 120–126 [CrossRef] [Google Scholar]
  2. Thorsten Kleinjung, Kazumaro Aoki, Jens Franke, Arjen K Lenstra, Emmanuel Thomé, Joppe W Bos, Pierrick Gaudry, Alexander Kruppa, Peter L Montgomery, Dag Arne Osvik, Herman te Riele, Andrey Timofeev, and Paul Zimmermann. Factorization of a 768-bit RSA modulus[G]. // Advances in Cryptology-CRYPTO 2010. Santa Barbara: Springer, 2010: 333–350 [CrossRef] [Google Scholar]
  3. Rabin M O. Probabilistic algorithm for testing primality[J]. Number Theory, 1980, 12 (1): 128–138 [CrossRef] [Google Scholar]
  4. Manindra Agrawal, Neeraj Kayal and Nitin Saxena. PRIMES is in P [J]. Annals of Mathematics, 2004, 160 (2): 78–793 [Google Scholar]
  5. Bernstein D J. Proving primality in essentially quartic random time[J]. Math Comp, 2007, 76 (257): 389–403 [CrossRef] [Google Scholar]
  6. JIN Zheng-ping, WEN Qiao-yan. Implementations of the Improved AKS Primality Testing Algorithm[J]. Journal of Sichuan University Natural Science Edition, 2009, 41 (1): 147–152 (in Chinese) [Google Scholar]
  7. Miller, Gary L. Riemann’s Hypothesis and Tests for Primality[J]. Journal of Computer and System Sciences, 1976, 13 (3): 300–317 [CrossRef] [Google Scholar]
  8. R. Solovay and V Strassen. A fast Monte-Carlo test for primality[J]. SIAM Journal on Computing, 1977, 6 (1): 84–86 [CrossRef] [Google Scholar]
  9. Bruce, J W. A Really Trivial Proof of the Lucas-Lehmer Test[J]. The American Mathematical Monthly, 1993, 100 (4): 370–371 [CrossRef] [Google Scholar]
  10. SHAFI GOLDWASSER and JOE KILIAN. Primality Testing Using Elliptic Curves[J]. Journal of the ACM, 1999, 46 (4): 450–472 [CrossRef] [Google Scholar]
  11. Atkin, AOL, and Morain F. Elliptic Curves and Primality Proving [J]. Mathematics of Computation, 1993, 61 (203): 29–68 [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.