Open Access
MATEC Web of Conferences
Volume 43, 2016
2016 4th International Conference on Nano and Materials Science (ICNMS 2016)
Article Number 04004
Number of page(s) 4
Section Materials science and Engineering
Published online 19 February 2016
  1. W. Flügge, Viscoelasticity, second ed., Springer: Berlin (1975) [CrossRef] [Google Scholar]
  2. R.M. Christensen, Theory of Viscoelasticity, second ed., Academic Press: New York (1982) [Google Scholar]
  3. J.L. White, Finite elements in linear viscoelastic analysis. Proc. of the 2nd Conference on Matrix Method in Structural Mechanics. AFFDL-TR-68–150: 489–516 (1986) [Google Scholar]
  4. T. Chen, The hybrid Laplace transform / finite element method applied to the quasi-static and dynamic analysis of viscoelastic Timoshenko beams. Int. J. Numer. Meth. Eng. 38,509–522 (1995) [CrossRef] [Google Scholar]
  5. Y.Z. Wang, T.J. Tsai, Static and dynamic analysis of a viscoelastic plate by the finite element method. Appl. Acoust. 25, 77–94 (1988) [CrossRef] [Google Scholar]
  6. S. Yi, H.H. Hilton, Dynamic finite element analysis of viscoelastic composite plates. Int. J. Numer. Meth. Eng. 37, 4081–96 (1994) [CrossRef] [Google Scholar]
  7. M.H. Ilyasov, A.Y. Aköz, The vibration and dynamic stability of viscoelastic plates. International Journal of Engineering Sciences. 38, 695–714 (2000) [CrossRef] [Google Scholar]
  8. B. Temel, M.F. Şahan, Transient analysis of orthotropic, viscoelastic thick plates in the Laplace domain. European Journal of Mechanics A/Solids. 37, 96–105 (2013) [CrossRef] [Google Scholar]
  9. A.Y. Aköz, F. Kadıoğlu, G. Tekin, Quasi-static and dynamic analysis of viscoelastic plates. Mechanics of Time-Dependent Materials, DOI 10.1007/s11043-015-9274-8 (2015) [Google Scholar]
  10. A.Y. Aköz, F. Kadıoğlu, The mixed finite element method for the quasi-static and dynamic analysis of viscoelastic Timoshenko beams. Int. J. Numer. Meth. Eng. 44, 1909–32(1999) [CrossRef] [Google Scholar]
  11. F. Kadıoğlu, A.Y. Aköz, The mixed finite element method for the dynamic analysis of visco-elastic circular beams. Proc. of the 4th International Conference on Vibration Problems, Jadavpur University (1999) [Google Scholar]
  12. F. Kadıoğlu, A.Y. Aköz, The quasi-static and dynamic responses of viscoelastic parabolic beams. Proc. on the 11th National Applied Mechanics Meeting (in Turkish). Bolu-Turkey (2000) [Google Scholar]
  13. F. Kadıoğlu, A.Y. Aköz, The mixed finite element for the quasi-static and dynamic analysis of viscoelastic circular beams. International Journal of Structural Engineering and Mechanics. 15, 735–752 (2003) [CrossRef] [Google Scholar]
  14. S.P. Timoshenko, S. Woinowsky-Krieger, Theory of Plates and Shells. McGraw-Hill Book Company (1959) [Google Scholar]
  15. C.L. Dym, I.H. Shames, Solid Mechanics: A Variational Approach. McGraw-Hill: New York (1973) [Google Scholar]
  16. J.T. Oden, J.N. Reddy, Variational Methods in Theoretical Mechanics. Springer-Berlin (1976) [CrossRef] [Google Scholar]
  17. H. Dubner, J. Abate, Numerical inversion of Laplace transforms by relating them to the finite Fourier cosine transform. J. ACM. 15,115–123(1968) [CrossRef] [Google Scholar]
  18. VI, Krylov, N.S. Skoblya, Handbook of numerical inversion of Laplace transforms. Translated from Russian, Israel Program for Scientific Translations, Jerusalem (1969) [Google Scholar]
  19. F. Durbin, Numerical inversion of Laplace transforms: An efficient improvement to Dubner and Abate’s method. Comput. J. 17, 371–376 (1974) [CrossRef] [Google Scholar]
  20. G.V. Narayanan, D.E. Beskos, Numerical operational methods for time-dependent linear problems. Int. J. Numer. Meth. Eng. 18, 1829–1854 (1982) [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.