Open Access
MATEC Web of Conferences
Volume 43, 2016
2016 4th International Conference on Nano and Materials Science (ICNMS 2016)
Article Number 04004
Number of page(s) 4
Section Materials science and Engineering
Published online 19 February 2016
  1. W. Flügge, Viscoelasticity, second ed., Springer: Berlin (1975) [CrossRef]
  2. R.M. Christensen, Theory of Viscoelasticity, second ed., Academic Press: New York (1982)
  3. J.L. White, Finite elements in linear viscoelastic analysis. Proc. of the 2nd Conference on Matrix Method in Structural Mechanics. AFFDL-TR-68–150: 489–516 (1986)
  4. T. Chen, The hybrid Laplace transform / finite element method applied to the quasi-static and dynamic analysis of viscoelastic Timoshenko beams. Int. J. Numer. Meth. Eng. 38,509–522 (1995) [CrossRef]
  5. Y.Z. Wang, T.J. Tsai, Static and dynamic analysis of a viscoelastic plate by the finite element method. Appl. Acoust. 25, 77–94 (1988) [CrossRef]
  6. S. Yi, H.H. Hilton, Dynamic finite element analysis of viscoelastic composite plates. Int. J. Numer. Meth. Eng. 37, 4081–96 (1994) [CrossRef]
  7. M.H. Ilyasov, A.Y. Aköz, The vibration and dynamic stability of viscoelastic plates. International Journal of Engineering Sciences. 38, 695–714 (2000) [CrossRef]
  8. B. Temel, M.F. Şahan, Transient analysis of orthotropic, viscoelastic thick plates in the Laplace domain. European Journal of Mechanics A/Solids. 37, 96–105 (2013) [CrossRef]
  9. A.Y. Aköz, F. Kadıoğlu, G. Tekin, Quasi-static and dynamic analysis of viscoelastic plates. Mechanics of Time-Dependent Materials, DOI 10.1007/s11043-015-9274-8 (2015)
  10. A.Y. Aköz, F. Kadıoğlu, The mixed finite element method for the quasi-static and dynamic analysis of viscoelastic Timoshenko beams. Int. J. Numer. Meth. Eng. 44, 1909–32(1999) [CrossRef]
  11. F. Kadıoğlu, A.Y. Aköz, The mixed finite element method for the dynamic analysis of visco-elastic circular beams. Proc. of the 4th International Conference on Vibration Problems, Jadavpur University (1999)
  12. F. Kadıoğlu, A.Y. Aköz, The quasi-static and dynamic responses of viscoelastic parabolic beams. Proc. on the 11th National Applied Mechanics Meeting (in Turkish). Bolu-Turkey (2000)
  13. F. Kadıoğlu, A.Y. Aköz, The mixed finite element for the quasi-static and dynamic analysis of viscoelastic circular beams. International Journal of Structural Engineering and Mechanics. 15, 735–752 (2003) [CrossRef]
  14. S.P. Timoshenko, S. Woinowsky-Krieger, Theory of Plates and Shells. McGraw-Hill Book Company (1959)
  15. C.L. Dym, I.H. Shames, Solid Mechanics: A Variational Approach. McGraw-Hill: New York (1973)
  16. J.T. Oden, J.N. Reddy, Variational Methods in Theoretical Mechanics. Springer-Berlin (1976) [CrossRef]
  17. H. Dubner, J. Abate, Numerical inversion of Laplace transforms by relating them to the finite Fourier cosine transform. J. ACM. 15,115–123(1968) [CrossRef]
  18. VI, Krylov, N.S. Skoblya, Handbook of numerical inversion of Laplace transforms. Translated from Russian, Israel Program for Scientific Translations, Jerusalem (1969)
  19. F. Durbin, Numerical inversion of Laplace transforms: An efficient improvement to Dubner and Abate’s method. Comput. J. 17, 371–376 (1974) [CrossRef]
  20. G.V. Narayanan, D.E. Beskos, Numerical operational methods for time-dependent linear problems. Int. J. Numer. Meth. Eng. 18, 1829–1854 (1982) [CrossRef]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.