Issue |
MATEC Web Conf.
Volume 174, 2018
3rd Scientific Conference Environmental Challenges in Civil Engineering (ECCE 2018)
|
|
---|---|---|
Article Number | 02019 | |
Number of page(s) | 11 | |
Section | Material Engineering, Waste Management in Civil Engineering | |
DOI | https://doi.org/10.1051/matecconf/201817402019 | |
Published online | 26 June 2018 |
Modified stepped scheme for modelling the dynamic behaviour of 3D poroviscoelastic solids
Research Institute for Mechanics, Lobachevsky State University of Nizhni Novgorod, 23 Prospekt Gagarina, bld. 6, 603950, Nizhni Novgorod, Russia
* Corresponding author: igumnov@mech.unn.ru
The problem of the dynamic response of a soil medium under different kinds of loads is of significant importance in various areas of engineering, especially in connection with structures. The present paper is dedicated to the modification of the numerical approach for modelling the dynamic behaviour of three dimensional poroviscoelastic solids. The basic equations for fluid-saturated porous media proposed by Biot are modified by replacing the classical linear elastic model of the solid skeleton with the viscoelastic model. Classical models of viscoelasticity are employed, such as Kelvin-Voight model, standard linear solid model and model with weakly singular kernel. Boundary integral equations method is applied to solving three-dimensional boundary-value problems. Stepped schemes modifications based on the linear and quadratic approximation of function are employed. A numerical example of poroviscoelastic rod under Heaviside type load is provided. A problem of a poroviscoelastic cube with a cavity subjected to a normal internal pressure is considered. The comparison of dynamic responses when poroviscoelastic material is described by different viscoelastic models is presented.
© The Authors, published by EDP Sciences, 2018
This is an Open Access article distributed under the terms of the Creative Commons Attribution License 4.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. (http://creativecommons.org/licenses/by/4.0/).
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.