Open Access
Issue
MATEC Web of Conferences
Volume 43, 2016
2016 4th International Conference on Nano and Materials Science (ICNMS 2016)
Article Number 03003
Number of page(s) 5
Section Material processing and preparation
DOI https://doi.org/10.1051/matecconf/20164303003
Published online 19 February 2016
  1. Karunakaran KP, Bernard A, Suryakumar S, Dembinski L, Taillandier G. Rapid manufacturing of metallic objects, Rapid Prototyp J (2012);18:264–80. [CrossRef] [Google Scholar]
  2. N. Turner B, Strong R, A. Gold S., A review of melt extrusion additive manufacturing processes: I. Process design and modeling, Rapid Prototyp J 2014;20:192–204. [CrossRef] [Google Scholar]
  3. Roberson D, Shemelya CM, MacDonald E, Wicker R., Expanding the applicability of FDM-type technologies through materials development, Rapid Prototyp J 2015;21:137–43. [CrossRef] [Google Scholar]
  4. Jafari MA, Mohammadi WH, Safari A, Danforth SC, Langrana N., A novel system for fused deposition of advanced multiple ceramics, Rapid Prototyp J 2000;6:161–75. [CrossRef] [Google Scholar]
  5. Masood S., Song W. Development of new metal/polymer materials for rapid tooling using fused deposition modelling, Mater Des 2004;25:587–94. [CrossRef] [Google Scholar]
  6. Kalita SJ, Bose S, Hosick HL, Bandyopadhyay A. Developement of controlled porosity polymer-ceramic composite scaffolds via FDM Mater Sci Eng C 2003;23:611–20. [CrossRef] [Google Scholar]
  7. Li JP, de Wijn JR, Van Blitterswijk C a, de Groot K., Porous Ti6Al4V scaffold directly fabricating by rapid prototyping: preparation and in vitro experiment Biomaterials 2006;27:1223–35. [Google Scholar]
  8. Bellini A, Shor L, Guceri SI., New developments in fused deposition modeling of ceramics, Rapid Prototyp J 2005;11:214–20. [CrossRef] [Google Scholar]
  9. Li J Bin, Xie ZG, Zhang XH, Zeng QG, Liu HJ. Key Eng Mater 2010;443:81–6. [Google Scholar]
  10. Armillotta A., Assessment of surface quality on textured FDM prototypes, Rapid Prototyp J 2006;12:35–41. [CrossRef] [Google Scholar]
  11. Thrimurthulu K, Pandey PM, Venkata Reddy N., Optimum part deposition orientation in fused deposition modelling, Int J Mach Tools Manuf 2004;44:585–94. [CrossRef] [Google Scholar]
  12. Milewski J., Lewis G., Thoma D., Keel G., Nemec R., Reinert R., Directed light fabrication of a solid metal hemisphere using 5-axis powder deposition, J Mater Process Technol 1998;75:165–72. [CrossRef] [Google Scholar]
  13. Zhang J., Adaptive Slicing for a Multi-Axis Laser Aided Manufacturing Process, J Mech Des 2004;126:254. [CrossRef] [Google Scholar]
  14. Song X, Pan Y, Chen Y., Development of a Low-Cost Parallel Kinematic Machine for Multidirectional Additive Manufacturing, J Manuf Sci Eng 2014;137:021005. [CrossRef] [Google Scholar]
  15. Giberti H, Cinquemani S, Legnani G, Effects of transmission mechanical characteristics on the choice of a motor-reducer, Mechatronics 2010, 20, 604–610. [CrossRef] [Google Scholar]
  16. Giberti H, Cinquemani S, Legnani G, A practical approach to the selection of the motor-reducer unit in electric drive systems, Mechanics Based Design of Structures and Machines 2011, 39, 303–319. [CrossRef] [Google Scholar]
  17. Giberti H, Clerici A, Cinquemani S, Specific accelerating factor: One more tool in motor sizing projects, Mechatronics 2014, 24, 898–905. [CrossRef] [Google Scholar]
  18. Saggin B., Scaccabarozzi D., Tarabini M. Instrumental phase-based method for Fourier transform spectrometer measurements processing (2011) Applied Optics, 50 (12), pp. 1717–1725. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.