Open Access
Issue
MATEC Web of Conferences
Volume 42, 2016
2015 The 3rd International Conference on Control, Mechatronics and Automation (ICCMA 2015)
Article Number 05002
Number of page(s) 5
Section Applications of Computer and IT
DOI https://doi.org/10.1051/matecconf/20164205002
Published online 17 February 2016
  1. Zhong Wanxie. On precise time-integration method for structural dynamics [j]. Journal of Dalian University of Technology, 2, (1994). [Google Scholar]
  2. Zhong Wanxie. Precise computation for transient analysis. Computational structural mechanics and applications, 12(1):1–6, (1995). [Google Scholar]
  3. Jiahao Lin, Weiping Shen, and FW Williams. A high precision direct integration scheme for structures subjected to transient dynamic loading. Computers & structures, 56(1):113–120, (1995). [CrossRef] [Google Scholar]
  4. Wang Y X Zhou G. A homogenized high precise direct integration based on taylor series. J Shanghai Jiaotong Univ, 35(1):1916–1919, (2001). [Google Scholar]
  5. Yuexian Wang, Xiaodong Tian, and Gang Zhou. Homogenized high precision direct integration scheme and its applications in engineering. Communications in numerical methods in engineering, 18(6):429–439, (2002). [CrossRef] [Google Scholar]
  6. Yuanxian Gu, Biaosong Chen, Hongwu Zhang, and Zhenqun Guan. Precise time-integration method with dimensional expanding for structural dynamic equations. AIAA journal, 39(12):2394–2399, (2001). [CrossRef] [Google Scholar]
  7. Gang Zhou Xiaohong Shi. A homogenized high precise direct integration based on legendre series. Chinese Journal of Computational Mechanics, 22(1):335–338, (2001). [Google Scholar]
  8. Gang Zhou Shaohua Fu. A homogenized high precise direct integration based on chebyshev series. Journal of Donghua University, 32(2):46–49, (2006). [Google Scholar]
  9. JH Argyris and DW Scharpf. Finite elements in time and space. Nuclear Engineering and Design, 10(4):456–464, (1969). [CrossRef] [Google Scholar]
  10. Wm H Reed and TR Hill. Triangularmesh methodsfor the neutrontransportequation. Los Alamos Report LA-UR-73–479, (1973). [Google Scholar]
  11. Bernardo Cockburn and Chi-Wang Shu. The local discontinuous galerkin method for timedependent convection-diffusion systems. SIAM Journal on Numerical Analysis, 35(6):2440–2463, (1998). [CrossRef] [MathSciNet] [Google Scholar]
  12. M Delfour, W Hager, and F Trochu. Discontinuous galerkin methods for ordinary differential equations. Mathematics of Computation, 36(154):455–473, (1981). [CrossRef] [Google Scholar]
  13. Shan Zhao and GW Wei. A unified discontinuous galerkin framework for time integration. Mathematical methods in the applied sciences, 37(7):1042–1071, (2014). [CrossRef] [Google Scholar]
  14. C-C Chien and T-Y Wu. An improved predictor/multi-corrector algorithm for a time-discontinuous galerkin finite element method in structural dynamics. Computational Mechanics, 25(5):430–437, (2000). [CrossRef] [Google Scholar]
  15. David Cohen, Ernst Hairer, and Ch Lubich. Numerical energy conservation for multi-frequency oscillatory differential equations. BIT Numerical Mathematics, 45(2):287–305, (2005). [CrossRef] [MathSciNet] [Google Scholar]
  16. Xiaomei Liu, Gang Zhou, Yonghong Wang, and Weirong Sun. Rectifying drifts of symplectic algorithm. Beijing University of Aeronautics and Astronautics, 39(1), (2013). [Google Scholar]
  17. Hans Van de Vyver. A symplectic runge–kutta–nystr¨om method with minimal phase-lag. Physics Letters A, 367(1):16–24, (2007). [CrossRef] [Google Scholar]
  18. Th Monovasilis, Z Kalogiratou, and Tom E Simos. Symplectic partitioned runge–kutta methods with minimal phase-lag. Computer Physics Communications, 181(7):1251–1254, (2010). [CrossRef] [Google Scholar]
  19. Qiong Tang, Chuan-miao Chen, and Luo-hua Liu. Energy conservation and symplectic properties of continuous finite element methods for hamiltonian systems. Applied mathematics and computation, 181(2):1357–1368, (2006). [CrossRef] [Google Scholar]
  20. Klaus-Jürgen Bathe and Gunwoo Noh. Insight into an implicit time integration scheme for structural dynamics. Computers & Structures, 98:1–6, (2012). [CrossRef] [Google Scholar]
  21. Nathan M Newmark. A method of computation for structural dynamics. Journal of the Engineering Mechanics Division, 85(3):67–94, (1959). [Google Scholar]
  22. Edward L Wilson. A computer program for the dynamic stress analysis of underground structures. Technical report, DTIC Document, (1968). [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.