Open Access
MATEC Web of Conferences
Volume 38, 2016
UTP-UMP Symposium on Energy Systems 2015 (SES 2015)
Article Number 02007
Number of page(s) 9
Section Hybrid Thermal System
Published online 11 January 2016
  1. B. Choudhury, B. B. Saha, P. K. Chatterjee, and J. P. Sarkar, “An overview of developments in adsorption refrigeration systems towards a sustainable way of cooling,” Applied Energy, vol. 104, pp. 554–567, 4// 2013. [Google Scholar]
  2. U. Desideri, S. Proietti, and P. Sdringola, “Solar-powered cooling systems: Technical and economic analysis on industrial refrigeration and air-conditioning applications,” Applied Energy, vol. 86, pp. 1376–1386, 9// 2009. [CrossRef] [Google Scholar]
  3. I. Daut, M. Adzrie, M. Irwanto, P. Ibrahim, and M. Fitra, “Solar Powered Air Conditioning System,” Energy Procedia, vol. 36, pp. 444–453, // 2013. [CrossRef] [Google Scholar]
  4. Q. P. Ha and V. Vakiloroaya, “Modeling and optimal control of an energy-efficient hybrid solar air conditioning system,” Automation in Construction, vol. 49, Part B, pp. 262–270, 1// 2015. [CrossRef] [Google Scholar]
  5. O. Ayadi, A. Mauro, M. Aprile, and M. Motta, “Performance assessment for solar heating and cooling system for office building in Italy,” Energy Procedia, vol. 30, pp. 490–494, // 2012. [CrossRef] [Google Scholar]
  6. K. F. Fong and C. K. Lee, “Performance advancement of solar air-conditioning through integrated system design for building,” Energy, vol. 73, pp. 987–996, 8/14/ 2014. [CrossRef] [Google Scholar]
  7. Z. Li, X. Ye, and J. Liu, “Performance analysis of solar air cooled double effect LiBr/H2O absorption cooling system in subtropical city,” Energy Conversion and Management, vol. 85, pp. 302–312, 9// 2014. [CrossRef] [Google Scholar]
  8. X. G. Casals, “Solar Cooling Economic Considerations: Centralized Versus Decentralized Options,” Journal of Solar Energy Engineering, vol. 128, pp. 231–236, 2006. [CrossRef] [Google Scholar]
  9. A. A. Al-Abidi, S. Bin Mat, K. Sopian, M. Y. Sulaiman, C. H. Lim, and A. Th, “Review of thermal energy storage for air conditioning systems,” Renewable and Sustainable Energy Reviews, vol. 16, pp. 5802–5819, 10// 2012. [CrossRef] [Google Scholar]
  10. Absorption Refrigeration. Available: [Google Scholar]
  11. WALL MOUNTED. Available: [Google Scholar]
  12. Wall mounted air conditioners. Available: [Google Scholar]
  13. CASSETTE. Available: [Google Scholar]
  14. T. M. I. Mahlia, H. H. Masjuki, and I. A. Choudhury, “Potential electricity savings by implementing energy labels for room air conditioner in Malaysia,” Energy Conversion and Management, vol. 43, pp. 2225–2233, 11// 2002. [CrossRef] [Google Scholar]
  15. Pricing & Tariff, Malaysia: Tenaga Nasional Berhad (TNB). Available: [Google Scholar]
  16. H.-M. Henning and J. Döll, “Solar Systems for Heating and Cooling of Buildings,” Energy Procedia, vol. 30, pp. 633–653, // 2012. [CrossRef] [Google Scholar]
  17. GEO Building. Available: [Google Scholar]
  18. Case Studies. Available: [Google Scholar]
  19. Tenaga Boleh Baharu (TBB). Available: [Google Scholar]
  20. Solar Collectors: Different Types and Fields of Application. Available: [Google Scholar]
  22. A. M. Baniyounes, Y. Y. Ghadi, M. G. Rasul, and M. M. K. Khan, “An overview of solar assisted air conditioning in Queensland’s subtropical regions, Australia,” Renewable and Sustainable Energy Reviews, vol. 26, pp. 781–804, 10// 2013. [CrossRef] [Google Scholar]
  23. A. Iranmanesh and M. A. Mehrabian, “Optimization of a lithium bromide–water solar absorption cooling system with evacuated tube collectors using the genetic algorithm,” Energy and Buildings, vol. 85, pp. 427–435, 12// 2014. [CrossRef] [Google Scholar]
  24. K. Sumathy, Z. C. Huang, and Z. F. Li, “Solar absorption cooling with low grade heat source — a strategy of development in South China,” Solar Energy, vol. 72, pp. 155–165, 2// 2002. [CrossRef] [Google Scholar]
  25. Saghiruddin and M. A. Siddiqui, “Economic analysis of two stage dual fluid absorption cycle for optimizing generator temperatures,” Energy Conversion and Management, vol. 42, pp. 407–437, 3// 2001. [CrossRef] [Google Scholar]
  26. M. Z. I. Khan, B. B. Saha, K. C. A. Alam, A. Akisawa, and T. Kashiwagi, “Study on solar/waste heat driven multi-bed adsorption chiller with mass recovery,” Renewable Energy, vol. 32, pp. 365–381, 3// 2007. [CrossRef] [Google Scholar]
  27. K. Gommed and G. Grossman, “Experimental investigation of a liquid desiccant system for solar cooling and dehumidification,” Solar Energy, vol. 81, pp. 131–138, 1// 2007. [CrossRef] [Google Scholar]
  28. S. Arivazhagan, S. N. Murugesan, R. Saravanan, and S. Renganarayanan, “Simulation studies on R134a—DMAC based half effect absorption cold storage systems,” Energy Conversion and Management, vol. 46, pp. 1703–1713, 7// 2005. [CrossRef] [Google Scholar]
  29. J. R. García Cascales, F. Vera García, J. M. Cano Izquierdo, J. P. Delgado Marín, and R. Martínez Sánchez, “Modelling an absorption system assisted by solar energy,” Applied Thermal Engineering, vol. 31, pp. 112–118, 1// 2011. [CrossRef] [Google Scholar]
  30. G. Evola, N. Le Pierrès, F. Boudehenn, and P. Papillon, “Proposal and validation of a model for the dynamic simulation of a solar-assisted single-stage LiBr/water absorption chiller,” International Journal of Refrigeration, vol. 36, pp. 1015–1028, 5// 2013. [Google Scholar]
  31. K.F. Fong, C. K. Lee, T. T. Chow, Z. Lin, and L. S. Chan, “Solar hybrid air-conditioning system for high temperature cooling in subtropicalcity,” Renewable Energy, vol. 35, pp. 2439–2451, 2010. [CrossRef] [Google Scholar]
  32. J. Bukoski, S. H. Gheewala, A. Mui, M. Smead, and S. Chirarattananon, “The life cycle assessment of a solar-assisted absorption chilling system in Bangkok, Thailand,” Energy and Buildings, vol. 72, pp. 150–156, 4// 2014. [CrossRef] [Google Scholar]
  33. A. Lecuona, R. Ventas, C. Vereda, and R. López, “Absorption solar cooling systems using optimal driving temperatures,” Applied Thermal Engineering, vol. 79, pp. 140–148, 3/25/ 2015. [Google Scholar]
  34. T. Avanessian and M. Ameri, “Energy, exergy, and economic analysis of single and double effect LiBr–H2O absorption chillers,” Energy and Buildings, vol. 73, pp. 26–36, 4// 2014. [CrossRef] [Google Scholar]
  35. A. T. Mohammad, S. Bin Mat, M. Y. Sulaiman, K. Sopian, and A. A. Al-abidi, “Survey of hybrid liquid desiccant air conditioning systems,” Renewable and Sustainable Energy Reviews, vol. 20, pp. 186–200, 4// 2013. [CrossRef] [Google Scholar]
  36. V. Jain, S. S. Kachhwaha, and G. Sachdeva, “Thermodynamic performance analysis of a vapor compression–absorption cascaded refrigeration system,” Energy Conversion and Management, vol. 75, pp. 685–700, 11// 2013. [CrossRef] [Google Scholar]
  37. B. Prasartkaew and S. Kumar, “Experimental study on the performance of a solar-biomass hybrid air-conditioning system,” Renewable Energy, vol. 57, pp. 86–93, 9// 2013. [CrossRef] [Google Scholar]
  38. M. Ortiz, H. Barsun, H. He, P. Vorobieff, and A. Mammoli, “Modeling of a solar-assisted HVAC system with thermal storage,” Energy and Buildings, vol. 42, pp. 500–509, 4// 2010. [CrossRef] [Google Scholar]
  39. S. Rosiek and F. J. Batlles, “Performance study of solar-assisted air-conditioning system provided with storage tanks using artificial neural networks,” International Journal of Refrigeration, vol. 34, pp. 1446–1454, 9// 2011. [CrossRef] [Google Scholar]
  40. B. M. Diaconu, “Energy analysis of a solar-assisted ejector cycle air conditioning system with low temperature thermal energy storage,” Renewable Energy, vol. 37, pp. 266–276, 1// 2012. [CrossRef] [Google Scholar]
  41. A. Al-Alili, Y. Hwang, R. Radermacher, and I. Kubo, “Optimization of a solar powered absorption cycle under Abu Dhabi’s weather conditions,” Solar Energy, vol. 84, pp. 2034–2040, 12// 2010. [CrossRef] [Google Scholar]
  42. A. Syed, M. Izquierdo, P. Rodríguez, G. Maidment, J. Missenden, A. Lecuona, et al., “A novel experimental investigation of a solar cooling system in Madrid,” International Journal of Refrigeration, vol. 28, pp. 859–871, 9// 2005. [CrossRef] [Google Scholar]
  43. A. P. Ferreira Leite, F. A. Belo, M. M. Martins, and D. B. Riffel, “Central air conditioning based on adsorption and solar energy,” Applied Thermal Engineering, vol. 31, pp. 50–58, 1// 2011. [CrossRef] [Google Scholar]
  44. L. A. Chidambaram, A. S. Ramana, G. Kamaraj, and R. Velraj, “Review of solar cooling methods and thermal storage options,” Renewable and Sustainable Energy Reviews, vol. 15, pp. 3220–3228, 8// 2011. [Google Scholar]
  45. B. Rismanchi, R. Saidur, H. H. Masjuki, and T. M. I. Mahlia, “Modeling and simulation to determine the potential energy savings by implementing cold thermal energy storage system in office buildings,” Energy Conversion and Management, vol. 75, pp. 152–161, 11// 2013. [CrossRef] [Google Scholar]
  46. H. Lin, X.-h. Li, P.-s. Cheng, and B.-g. Xu, “Thermoeconomic evaluation of air conditioning system with chilled water storage,” Energy Conversion and Management, vol. 85, pp. 328–332, 9// 2014. [CrossRef] [Google Scholar]
  47. A. A. Al-Ugla, M. A. I. El-Shaarawi, and S. A. M. Said, “Alternative designs for a 24-hours operating solar-powered LiBr–water absorption air-conditioning technology,” International Journal of Refrigeration, vol. 53, pp. 90–100, 5// 2015. [Google Scholar]
  48. Z. Zhang, W. D. Turner, Q. Chen, C. Xu, and S. Deng, “Tank size and operating strategy optimization of a stratified chilled water storage system,” Applied Thermal Engineering, vol. 31, pp. 2656–2664, 10// 2011. [CrossRef] [Google Scholar]
  49. S. Boonnasa and P. Namprakai, “The chilled water storage analysis for a university building cooling system,” Applied Thermal Engineering, vol. 30, pp. 1396–1408, 8// 2010. [Google Scholar]
  50. Y. L. Yin, Z. P. Song, Y. Li, R. Z. Wang, and X. Q. Zhai, “Experimental investigation of a mini-type solar absorption cooling system under different cooling modes,” Energy and Buildings, vol. 47, pp. 131–138, 4// 2012. [CrossRef] [Google Scholar]
  51. A. Al-Alili, M. D. Islam, I. Kubo, Y. Hwang, and R. Radermacher, “Modeling of a solar powered absorption cycle for Abu Dhabi,” Applied Energy, vol. 93, pp. 160–167, 5// 2012. [Google Scholar]
  52. O. Marc, G. Anies, F. Lucas, and J. Castaing-Lasvignottes, “Assessing performance and controlling operating conditions of a solar driven absorption chiller using simplified numerical models,” Solar Energy, vol. 86, pp. 2231–2239, 9// 2012. [Google Scholar]
  53. J. Albers, “New absorption chiller and control strategy for the solar assisted cooling system at the German federal environment agency,” International Journal of Refrigeration, vol. 39, pp. 48–56, 3// 2014. [Google Scholar]
  54. L. H. Alva and J. E. González, “Simulation of an Air-Cooled Solar-Assisted Absorption Air Conditioning System,” Journal of Solar Energy Engineering, vol. 124, pp. 276–282, 2002. [CrossRef] [Google Scholar]
  55. H. Hernandez, “Analysis and Modeling of a Solar-Assisted Air Conditioning and Dehumidification System for Applications in Puerto Rico,” M.S., Univ. of Puerto Rico, 1997. [Google Scholar]
  56. G. P. Henze, B. Biffar, D. Kohn, and M. P. Becker, “Optimal design and operation of a thermal storage system for a chilled water plant serving pharmaceutical buildings,” Energy and Buildings, vol. 40, pp. 1004–1019, // 2008. [CrossRef] [Google Scholar]
  57. B. Rismanchi, R. Saidur, H. H. Masjuki, and T. M. I. Mahlia, “Energetic, economic and environmental benefits of utilizing the ice thermal storage systems for office building applications,” Energy and Buildings, vol. 50, pp. 347–354, 7// 2012. [Google Scholar]
  58. B. M. Diaconu, S. Varga, and A. C. Oliveira, “Experimental assessment of heat storage properties and heat transfer characteristics of a phase change material slurry for air conditioning applications,” Applied Energy, vol. 87, pp. 620–628, 2// 2010. [CrossRef] [Google Scholar]
  59. X. Q. Zhai, X. L. Wang, T. Wang, and R. Z. Wang, “A review on phase change cold storage in air-conditioning system: Materials and applications,” Renewable and Sustainable Energy Reviews, vol. 22, pp. 108–120, 6// 2013. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.