Open Access
Issue
MATEC Web of Conferences
Volume 35, 2015
2015 4th International Conference on Mechanics and Control Engineering (ICMCE 2015)
Article Number 02008
Number of page(s) 8
Section Mechanical engineering and control system
DOI https://doi.org/10.1051/matecconf/20153502008
Published online 16 December 2015
  1. R.A. Cooper, L.A. Quatrano, P.W. Axelson, W. Harlan, Research on physical activity and health among people with disabilities: a consensus statement, Journal of Rehabilitation Research and Development. 36(2) (1999) 142. [Google Scholar]
  2. M.L. Boninger, A.L. Souza, R.A. Cooper, S. G. Fitzgerald, A.M. Koontz, B.T. Fay, Propulsion patterns and pushrim biomechanics in manual wheelchair propulsion, Arch Phys Med Rehabil. 83 (2002) 718–723. [CrossRef] [Google Scholar]
  3. L.H.V. van der Woude, H.E.J. Veeger, A.J. Dallmeijer, T.W.J. Janssen, L.A. Rozendaal, Biomechanics and physiology in active manual wheelchair propulsion, Med Eng Phys. 23 (2001) 713–733. [CrossRef] [Google Scholar]
  4. H.W. Wu, L.J. Berglund, F.C. Su, B. Yu, A. Westreich, K.J. Kim, K.N. An, An instrumented wheel for kinetic analysis of wheelchair propulsion, Journal of Biomechanical Engineering. 120(4) (1998) 533–535. [CrossRef] [Google Scholar]
  5. M.L. Boninger, R.A. Cooper, R.N. Robertson, S.D. Shimada, Three-Dimensional pushrim forces during two speeds of wheelchair propulsion, American Journal of Physical Medicine & Rehabilitation. 76(5) (1997), 420–426. [CrossRef] [Google Scholar]
  6. H.E.J. Veeger, L.H.V. van der Woude, Load on the upper extremity in manual wheelchair propulsion, Journal of Electromyography and Kinesiology. 1 (1991) 270–280. [CrossRef] [Google Scholar]
  7. B.R. Kotajarvi, B.S. Michelle, An Kai-Nan, R.K. Kenton, R.B. Jeffrey, The effect of seat position on wheelchair propulsion biomechanics, Journal of Rehabilitation Research and Development. 41(3B) (2004) 403–414. [CrossRef] [PubMed] [Google Scholar]
  8. S. de Groot, H.E.J. Veeger, P. Hollander, L.H.V. van der Woude, Wheelchair propulsion technique and mechanical efficiency after 3 wk of practice, Medicine & Science in Sports & Exercise. 34 (2002) 756–766. [CrossRef] [PubMed] [Google Scholar]
  9. D.J.J. Bregman, S. van Drongelen, H.E.J. Veeger, Is effective force application in handrim wheelchair propulsion also efficient?, Clinical Biomechanics. 24 (2009) 13–19. [CrossRef] [Google Scholar]
  10. J.W. Rankin, A. M. Kwarciak, W. M. Richter, R. R. Neptune, The influence of altering push force effectiveness on upper extremity demand during wheelchair propulsion, Journal of Biomechanics. 43 (2010) 2771–2779. [CrossRef] [Google Scholar]
  11. J. W. Rankin, W. M. Richter, R. R. Neptune, Individual muscle contributions to push and recovery subtasks during wheelchair propulsion, Journal of Biomechanics. 44 (2011) 1246–1252. [CrossRef] [Google Scholar]
  12. J.W. Rankin, A. M. Kwarciak, W. M. Richter, R. R. Neptune, The influence of wheelchair propulsion technique on upper extremity muscle demand: a simulation study. Clinical Biomechanics. 27(9), 879–886. [CrossRef] [Google Scholar]
  13. M. Leary, J. Gruijters, M. Mazur, A. Subic, M. Burton, F. K. Fuss, A fundamental model of quasi-static wheelchair biomechanics, Medical Engineering and Physics. 34 (2012) 1278–1286. [CrossRef] [Google Scholar]
  14. M. Ackermann, F. Leonardi, H.R. Costa, A.T. Fleury, Modeling and optimal control formulation for manual wheelchair locomotion: The influence of mass and slope on performance, Proc. of The 5th IEEE RAS & EMBS International Conference on Biomedical Robotics and Biomechatronics. (2014) 1079–1084. [Google Scholar]
  15. D. A. Winter, Biomechanics and Motor Control of Human Movement, John-Wiley & Sons Inc., New York, 2009, 4th ed. [CrossRef] [Google Scholar]
  16. K.R.S. Holzbaur, W.M. Murray, S.L. Delp, A model of the upper extremity for simulating musculoskeletal surgery and analyzing neuromuscular control, Annals of Biomedical Engineering. 33(6) (2005) 829–840. [CrossRef] [Google Scholar]
  17. S.L. Delp, C.A. Frank, S.A. Allison, P. Loan, A. Habib, C.T. John, E. Guendelman, D.G. Thelen, OpenSim: open-source software to create and analyze dynamic simulations of movement, IEEE Transactions on Biomedical Engineering. 54(11) (2007) 1940–1950. [CrossRef] [Google Scholar]
  18. W. Schiehlen, Multibody system dynamics: roots and perspectives, Multibody System Dynamics. 1 (1997) 149–188. [CrossRef] [Google Scholar]
  19. A. Erdemir, S. McLean, W. Herzog, A. J. van den Bogert, Model-based estimation of muscle forces exerted during movements, Clinical Biomechanics. 22 (2007) 131–154. [CrossRef] [PubMed] [Google Scholar]
  20. M. Ackermann, A. J. van den Bogert, Optimality principles for model-based prediction of human gait, Journal of Biomechanics. 43 (2010) 1055–1060. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.