Open Access
MATEC Web of Conferences
Volume 32, 2015
International Symposium of Optomechatronics Technology (ISOT 2015)
Article Number 03001
Number of page(s) 6
Section Fabrication and processing
Published online 02 December 2015
  1. K. Bolotin, K. Sikes, Z. Jiang, M. Klima, G. Fudenberg, J. Hone, P. Kim, and H. Stormer, “Ultrahigh electron mobility in suspended graphene,” Solid State Communications, vol. 146, no. 9–10, pp. 351–355, Jun. 2008. [Google Scholar]
  2. C. Lee, X. Wei, J. W. Kysar, and J. Hone, “Measurement of the elastic properties and intrinsic strength of monolayer graphene,” Science, vol. 321, no. 5887, pp. 385–388, 2008. [CrossRef] [PubMed] [Google Scholar]
  3. K. Kostarelos and K. S. Novoselov, “Graphene devices for life,” Nat Nano, vol. 9, no. 10, pp. 744–745, Oct. 2014. [CrossRef] [Google Scholar]
  4. F. Schwierz, “Graphene transistors,” Nat Nano, vol. 5, no. 7, pp. 487–496, Jul. 2010. [Google Scholar]
  5. J. S. Bunch, A. M. van der Zande, S. S. Verbridge, I. W. Frank, D. M. Tanenbaum, J. M. Parpia, H. G. Craighead, and P. L. McEuen, “Electromechanical resonators from graphene sheets,” Science, vol. 315, no. 5811, pp. 490–493, 2007. [CrossRef] [PubMed] [Google Scholar]
  6. F. Rana, “Graphene optoelectronics: Plasmons get tuned up,” Nat Nano, vol. 6, no. 10, pp. 611–612, Oct. 2011. [CrossRef] [Google Scholar]
  7. F. Bonaccorso, Z. Sun, T. Hasan, and A. C. Ferrari, “Graphene photonics and optoelectronics,” Nat Photon, vol. 4, no. 9, pp. 611–622, Sep. 2010. [Google Scholar]
  8. A. Pirkle, J. Chan, A. Venugopal, D. Hinojos, C. W. Magnuson, S. McDonnell, L. Colombo, E. M. Vogel, R. S. Ruoff, and R. M. Wallace, “The effect of chemical residues on the physical and electrical properties of chemical vapor deposited graphene transferred to sio2,” Applied Physics Letters, vol. 99, no. 12, p. 122108, 2011. [Google Scholar]
  9. N. Kurra, R. G. Reifenberger, and G. U. Kulkarni, “Nanocarbon-scanning probe microscopy synergy: Fundamental aspects to nanoscale devices,” ACS Appl. Mater. Interfaces, vol. 6, no. 9, pp. 6147–6163, May 2014. [CrossRef] [Google Scholar]
  10. A. Giesbers, U. Zeitler, S. Neubeck, F. Freitag, K. Novoselov, and J. Maan, “Nanolithography and manipulation of graphene using an atomic force microscope,” Solid State Communications, vol. 147, no. 9–10, pp. 366–369, Sep. 2008. [CrossRef] [Google Scholar]
  11. B. Vasic, M. Kratzer, A. Matkovic, A. Nevosad, U. Ralevic, D. Jovanovic, C. Ganser, C. Teichert, and R. Gajic, “Atomic force microscopy based manipulation of graphene using dynamic plowing lithography,” Nanotechnology, vol. 24, no. 1, p. 015303, 2013. [CrossRef] [Google Scholar]
  12. Y. Zhang, L. Liu, N. Xi, Y. Wang, and Z. Dong, “Cutting graphene using an atomic force microscope based nanorobot,” in Nanotechnology (IEEE-NANO), 2010 10th IEEE Conference on, 2010, pp. 639–644. [Google Scholar]
  13. S. Zimmermann, S. Barragan, and S. Fatikow, “Nanorobotic processing of graphene: A platform tailored for rapid prototyping of graphene-based devices.” Nanotechnology Magazine, IEEE, vol. 8, no. 3, pp. 14–19, 2014. [CrossRef] [Google Scholar]
  14. C. Diederichs, M. Bartenwerfer, M. Mikczinski, S. Zimmermann, T. Tiemerding, C. Geldmann, H. Nguyen, C. Dahmen, and S. Fatikow, “A rapid automation framework for applications on the microand nanoscale,” in Proceedings of Australasian Conference on Robotics and Automation, 2013. [Google Scholar]
  15. S. Zimmermann, T. Tiemerding, T. Li, W. Wang, Y. Wang, and S. Fatikow, “Automated mechanical characterization of 2-d materials using sem based visual servoing,” International Journal of Optomechatronics, vol. 7, no. 4, pp. 283–295, Oct. 2013. [CrossRef] [Google Scholar]
  16. S. Zimmermann, T. Tiemerding, and S. Fatikow, “Automated robotic manipulation of individual colloidal particles using vision-based control,” Mechatronics, IEEE/ASME Transactions on, vol. PP, no. 99, pp. 1–8, 2014. [Google Scholar]
  17. K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, “Electric field effect in atomically thin carbon films,” Science, vol. 306, no. 5696, pp. 666–669, 2004. [CrossRef] [PubMed] [Google Scholar]
  18. P. Blake, E. W. Hill, A. H. Castro Neto, K. S. Novoselov, D. Jiang, R. Yang, T. J. Booth, and A. K. Geim, “Making graphene visible,” Applied Physics Letters, vol. 91, no. 6, p. 063124, 2007. [Google Scholar]
  19. H. Li, J. Wu, X. Huang, G. Lu, J. Yang, X. Lu, Q. Xiong, and H. Zhang, “Rapid and reliable thickness identification of two-dimensional nanosheets using optical microscopy,” ACS Nano, vol. 7, no. 11, pp. 10344–10353, Nov. 2013. [CrossRef] [Google Scholar]
  20. C. M. Nolen, G. Denina, D. Teweldebrhan, B. Bhanu, and A. A. Balandin, “High-throughput large-area automated identification and quality control of graphene and few-layer graphene films,” ACS Nano, vol. 5, no. 2, pp. 914–922, Feb. 2011. [CrossRef] [Google Scholar]
  21. G. Bradski, “The open cv library,” Dr. Dobb’s Journal of Software Tools, 2000. [Google Scholar]
  22. A. C. Ferrari, J. C. Meyer, V. Scardaci, C. Casiraghi, M. Lazzeri, F. Mauri, S. Piscanec, D. Jiang, K. S. Novoselov, S. Roth, and A. K. Geim, “Raman spectrum of graphene and graphene layers,” Phys. Rev. Lett., vol. 97, no. 18, pp. 187401–, Oct. 2006. [Google Scholar]
  23. S. B. Aksu and J. A. Turner, “Calibration of atomic force microscope cantilevers using piezolevers,” Review of Scientific Instruments, vol. 78, no. 4, p. 043704, 2007. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.