Open Access
MATEC Web of Conferences
Volume 24, 2015
EVACES’15, 6th International Conference on Experimental Vibration Analysis for Civil Engineering Structures
Article Number 07006
Number of page(s) 7
Section Dynamics of footbridges
Published online 19 October 2015
  1. S. Živanović, I.M. Diaz, A. Pavić, Influence of walking and standing crowds on structural dynamic properties, in: 27th IMAC Conf., Orlando, USA, 2009. [Google Scholar]
  2. S. Živanović, A. Pavić, E.T. Ingólfsson, Modeling Spatially Unrestricted Pedestrian Traffic on Footbridges, J. Struct. Eng. 136 (2010) 1296–1308. doi:10.1061/(ASCE)ST.1943-541X.0000226. [CrossRef] [Google Scholar]
  3. M. Kasperski, Damping induced by pedestrians, in: 9th Int. Conf. Struct. Dyn. EURODYN, Porto, Port. 30 June - 2 July, 2014: pp. 1059–1064. [Google Scholar]
  4. OHBDC, Ontario Highway Bridge Design Code, Highway Engineering Division, Ministry of Transportation and Communication, Ontario, Canada, (1983). [Google Scholar]
  5. Steel, Concrete and Composite Bridges—Part 2: Specification for Loads; Appendix C: Vibration Serviceability Requirements for Foot and Cycle Track Bridges, BS 5400. UK: British Standards Association, London, (1978). [Google Scholar]
  6. ISO 10137 - Bases for design of structures - Serviceability of buildings and walkways against vibrations, (1992). [Google Scholar]
  7. Eurocode 5, Design of Timber Structures–Part 2: Bridges, ENV 1995-2: 1997, European Committee for Standardization, Brussels, Belgium, (1997). [Google Scholar]
  8. Sétra, Guide methodologique passerelles pietonnes (Technical guide Footbridges: assessment of vibrational behaviour of footbridges under pedestrian loading), 2006. [Google Scholar]
  9. Design of footbridges – HIVOSS (Human Induced Vibrations of Steel Structures), 2008. [Google Scholar]
  10. P.Archbold, Interactive Load Models for Pedestrian Footbridges, PhD Thesis, University College Dublin, 2004. [Google Scholar]
  11. P.Archbold, Evaluation of novel interactive load models of crowd loading on footbridges, in: 4th Symp. Bridg. Infrastruct. Res. Ireland, Natl. Univ. Ireland, Galw., 2008: pp. 35–44. [Google Scholar]
  12. P. Clemente, G. Ricciardi, F. Saitta, DYNAMIC RESPONSE OF A FOOTBRIDGE TO WALKING PEOPLE, in: Int. Work. Civ. Struct. Sealth Monit. (Weigh Motion), Load Capacit. Bridg. Performance, Italy, 2008. [Google Scholar]
  13. C.C.Caprani, J. Keogh, P. Archbold, P. Fanning, Characteristic vertical response of a footbridge due to crowd loading, in: Eurodyn 2011 – Eigth Eur. Conf. Struct. Dyn., Leuven, Belgium, 2011: pp. 978–985. [Google Scholar]
  14. P. Young, Improved floor vibration prediction methodologies. ARUP vibration seminar, (2001). [Google Scholar]
  15. C.R. Lee, C.T. Farley, Determinants of the center of mass trajectory in human walking and running., J. Exp. Biol. 201 (1998) 2935–2944. [Google Scholar]
  16. A. Arampatzis, G.P. Brüggemann, V. Metzler, The effect of speed on leg stiffness and joint kinetics in human running., J. Biomech. 32 (1999) 1349–53. [CrossRef] [Google Scholar]
  17. L. Zhang, D. Xu, M. Makhsous, F. Lin, Stiffness and viscous damping of the human leg, in: 24th Annu. Meet. Am. Soc. Biomech., Chicago, 2000. [Google Scholar]
  18. S. Rapoport, J. Mizrahi, E. Kimmel, O. Verbitsky, E. Isakov, Constant and variable stiffness and damping of the leg joints in human hopping., 2003. doi:10.1115/1.1590358. [Google Scholar]
  19. G.A. Bertos, S.M. Ieee, D.S.Childress, M. Ieee, S. a Gard, The vertical mechanical impedance of the locomotor system during human walking with applications in rehabilitation, in: Proc. 9th Int. Conf. Rehabil. Robot., 2005: pp. 380–383. [Google Scholar]
  20. H. Geyer, A. Seyfarth, R. Blickhan, Compliant leg behaviour explains basic dynamics of walking and running., Proc. Biol. Sci. 273 (2006) 2861–7. doi:10.1098/rspb.2006.3637. [Google Scholar]
  21. M.K. Lebiedowska, T.M.Wente, M. Dufour, The influence of foot position on body dynamics., J. Biomech. 42 (2009) 762–6. doi:10.1016/jjbiomech.2008.12.021. [CrossRef] [Google Scholar]
  22. F. Venuti, V. Racic, A. Corbetta, Pedestrian-structure interaction in the vertical direction:Coupled Oscillator-Force Model for Vibration Serviceability Assessment, in: Proc. 9th Int. Conf. Struct. Dyn. EURODYN 2014, Porto, Portugal, 2014: pp. 915–920. [Google Scholar]
  23. M. Zhang, C.T. Georgakis, W.M Qu, J. Chen, C. Engineering, SMD model parameters of pedestrians for vertical human-structure interaction, in: IMAC XXXIII A Conf. Expo. Struct. Dyn., 2015. [Google Scholar]
  24. K. Portier, J.K. Tolson, S.M.Roberts, Body weight distributions for risk assessment., Risk Anal. 27 (2007) 11–26. doi:10.1111/j.1539-6924.2006.00856.x. [CrossRef] [Google Scholar]
  25. C.C. Caprani, J. Keogh, P. Archbold, P. Fanning, Enhancement factors for the vertical response of footbridges subjected to stochastic crowd loading, Comput. Struct. 102-103 (2012) 87–96. doi:10.1016/j.compstruc.2012.03.006. [CrossRef] [Google Scholar]
  26. M. Silva, H. Lieven, L. Shingle, T. Urgueira, Theoretical and Experimental Modal Analysis, Res. Stud. Press LTD, Baldock, Hertfordshire, Engl. (1998). [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.