Open Access
MATEC Web of Conferences
Volume 22, 2015
International Conference on Engineering Technology and Application (ICETA 2015)
Article Number 02018
Number of page(s) 6
Section Electric and Electronic Engineering
Published online 09 July 2015
  1. Sample A P, Meyer D A, & Smith J R. 2011. Analysis, experimental results, and range adaptation of magnetically coupled resonators for wireless power transfer. IEEE Transactions on Industrial Electronics, 58(2): 544–554. [CrossRef]
  2. Kurs A, Karalis A. & Moffatt R, et al. 2007. Wireless power transfer via strongly coupled magnetic resonances. Scenic-express, 317(5834): 83–86.
  3. Jiaxun Wu, Junyong Wu. & Yu Zhang, et al. 2012. Experimental Research on Wireless Power Transmission Based on Magnetic Coupling Resonant Theory. Modern Electric Power, 29(1): 24–28.
  4. Wenzhen Fu, Po Zhang. & Dongyuan Qiu, et al. 2009. Maximum efficiency analysis and design of self-resonance coupling coils for wireless power transmission system. Proceedings of the CSEE, 29(18): 21–25.
  5. Yuan Zhai, Yue Sun. & Xin Dai, et al. 2012. Modeling and analysis of magnetic resonance wireless power transmission systems. Proceedings of the CSEE, 32(12): 155–160.
  6. Ishizaki T. & Awai D F I. 2011. A novel concept for 2-dimensional free access wireless power transfer system using asymmetric coupling resonators with different sizes. IMWS, IEEE MTT-S International, 12(13): 243–246.
  7. Duongtp, Lee J. W. 2011. Experimental results of high-efficiency resonant coupling wireless power transfer using a variable coupling method. IEEE Microwave and Wireless Components Letters, 21(8): 442–444. [CrossRef]
  8. K. Scheurlen, A. Schnitzer. & J. Krammer et al. 2014. Stellenwert. Der Galaktographie zur Abklärung pathologischer Sekretion in der komplementären Mammadiagnostik. Der Radiologe, 54 (1).
  9. Teck C B, Imura T. & Kato M, et al.2010. Basic study of improving efficiency of wireless power transfer via magnetic resonance coupling based on impedance matching. IEEE International Symposium on Industrial Electronics. Bari, Italy: IEEE, pp: 2011–2016.
  10. Seung-Hwan L. & Lorenz R D. 2011. Development and validation of model for 95%-efficiency 220-W wireless power transfer over a 30-cm air gap. IEEE Trans. on Industry Applications, 47(6):2495–2504. [CrossRef]
  11. Y.-H. Kim, S.-Y. Kang. & M.-L. Lee, et al. 2009. Optimization of wireless power transmission through resonant coupling. Proceedings of the Compatability and Power Electronics, (5): 426–431.
  12. Chunbo Zhu, Kai Liu, Chunlai Yu, Rui Ma. & Hexiao Cheng. 2008. Simulation and experimental analysis on wireless energy transfer based on magnetic resonances. Harbin: IEEE Vehicle Power and Propulsion Conference, pp: 1–4.
  13. Sunkyu K, Myunghoi K. & Kyoungchoul K, et al. 2011. Analytical expressions for maximum transferred power in wireless power transfer systems. IEEE International Symposium on Electromagnetic Compatibility. Long Beach, USA: IEEE, pp: 379–383.
  14. Gabriele Grandi, Marian K Kazimierczuk, Antonio Massarini. & Ugo Reggiani. 1999. Stray capacitances of single-layer solenoid air-core inductors. IEEE Transactions on Industry Applications, 35(5): 1162–1166. [CrossRef]
  15. Chunlai Yu, Rengui Lu, Yinhua Mao, Litao Ren. & Chunbo Zhu. 2009. Research on the Model of Magnetic-Resonance Based Wireless Energy Transfer System. Dearborn, MI: Vehicle Power and Propulsion Conference, pp: 414–418.
  16. Thuc P D. & Jong-Wook L. 2011. Experimental results of high-efficiency resonant coupling wireless power transfer using a variable coupling method. IEEE Microwave and Wireless Components Letters, 21(8): 442–444. [CrossRef]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.