Open Access
MATEC Web of Conferences
Volume 22, 2015
International Conference on Engineering Technology and Application (ICETA 2015)
Article Number 01025
Number of page(s) 9
Section Information and Communication Technology
Published online 09 July 2015
  1. Wen, L. 2009. XML and unstructured data management, Computer Knowledge and Technology, 06(05): 1306–1308. [Google Scholar]
  2. Teng. T. 2015. Application and future of traditional music big data, Journal of Xinghai Conservatory of Music, (138): 61–65. [Google Scholar]
  3. Wu, H.Y. 2014. An exploration on the database retrieval of northeastern folk music, Library Research, (16): 51–54. [Google Scholar]
  4. Ye, P.S. 2015. A study on search strategies of the unstructured P2P network, Journal of Yulin University, 25(2): 37–40. [Google Scholar]
  5. Yang, Y. 2013. A study on the application of unstructured database in video retrieval, Science & Technology Information, 12(9): 73–74. [Google Scholar]
  6. Zou, B. 2008. Research and Implementation of the Organization of Massive Unstructured Data. Wuhan: Huazhong University of Science and Technology. [Google Scholar]
  7. Lev Novik & Irena Hudis. 2006. Peer-to-Peer Replication in WinFS, Microsoft Research, Technical Report, 29(5):4–6. [Google Scholar]
  8. Craig A. N. Soules, Gregory R. Ganger. 2004. Toward automatic context-based attribute assignment for semantic file systems, Carnegie Mellon University, 4(1):12–67. [Google Scholar]
  9. Wang, C. 2006. A Study on the Implementation of the Database System Retrieval Structure. Beijing: China Machine Press. [Google Scholar]
  10. J. Zobel. & A. Moffat. 2006. Inverted files for text search engines, ACM Computing Surveys, 38(2): 346–359. [Google Scholar]
  11. Udi Manber & Sun, W. 1994. GLIMPSE: a tool to search through entire file systems, Winter USENIX Technical Conference. USENIX Association, 4(2): 23–32. [Google Scholar]
  12. Google Desktop. [Google Scholar]
  13. Yahoo Desktop. [Google Scholar]
  14. Windows Desktop Search. [Google Scholar]
  15. Fazli Can, Ismail Sengor Altingovde. & Engin Demir. 2004. Efficiency and effectiveness of query processing in cluster-based retrieval, Information Systems, 29(8): 697–717. [CrossRef] [Google Scholar]
  16. E. W. Brown, J. P Callan. & W. B. 2000. Crof. Fast incremental indexing for full-text information retrieval, 20th VLDB Conference, 34(7):68–90. [Google Scholar]
  17. Wan, J.C. & Lu, L. 2002. The Principle, Composition and Application of Software Architecture. Beijing: Science Press, pp: 122–320. [Google Scholar]
  18. David K. Gifford, Pierre Jouvelotl, Mark A. Sheldon & James W. O’Toole, Jr. 2006. Semantic file systems, MIT Laboratory for Computer Science, 24(41): 6–29. [Google Scholar]
  19. David K. Gifford, Pierre Jouvelot, Mark A. Sheldon. & James W. O’Toole Jr. 1991. Semantic file systems. ACM Symposium on Operating System Principles, Asilomar, Pacific Grove, CA: ACM Press, 25(5): 13–25. [Google Scholar]
  20. B. Gopal. & U. Manber. 1999. Integrating content-based access mechanisms with hierarchical file systems, Symposium on Operating Systems Design and Implementation, ACM, 27(13): 265–278. [Google Scholar]
  21. S. Sechrest. &M. McClennen. 1992. Blending hierarchical and attribute-based file naming, International Conference on Distributed Computing Systems, 43(22): 572–580. [Google Scholar]
  22. Weibel S, Kunze J, Lagoze C, et al. 1998. Dublin Core Metadata for Resource Discovery, Internet Engineering Task Force RFC, 2413–2415. [Google Scholar]
  23. Stuart Weibel. 1997. The Dublin Core: a simple content description model for electronic resources, Bulletin of the American Society for Information Science and Technology, 24(1):9–11. [CrossRef] [Google Scholar]
  24. Shigeo Sugimoto, Thomas Baker, Stuart L. Weibel. 2002. Dublin Core: Process and Principles. Digital Libraries: People, Knowledge and Technology, 25–35. [Google Scholar]
  25. Liu, Y.M. & Liu, S.H. 2000. The Dublin Core Metadata and its application, Information Science, 18(6): 572–574. [Google Scholar]
  26. Zhang, M. & Zhang, X.L. 2000. The development of Metadata and its formats, Journal of the Sichuan Society for Library Science, 12(2): 63–70. [Google Scholar]
  27. Zhou, D.P. & Xie, K.L. 2007. Lucene search engine, Computer Engineering, 36(18): 95–96. [Google Scholar]
  28. Li, W. & Li, L. 2003. Web search engine and the full-text retrieval technique, Information Science, 32(5): 558–560. [Google Scholar]
  29. Shen, Z., Jiang, B.L. & Chen, Y., et al. 2004. A summarization of the full-text retrieval, Computer Science, 15(5): 61–64. [Google Scholar]
  30. Li, Y.C. & Ding, H.F. 2010. Research and application of the full-text retrieval of Lucene, Computer Technology and Science, 20(2): 12–15. [Google Scholar]
  31. Yao, X.W. & Wang, X.M. 2005. The realization of an MVC framework based on the design mode, Computer Age, 25(6): 21–22. [Google Scholar]
  32. Y. Liu. 2014. Cultural dimension of musical iconology based on graph clustering, Energy Education Science and Technology Part A, (12): 1863–1870. [Google Scholar]
  33. Liu, Y.T. 2014. The cultivation of practical consciousness in music iconography study–taking the study on music images of the Bo people’s cliff paintings as a case, Journal of Guizhou University (Art), 28(1): 117–124 [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.