Open Access
Issue
MATEC Web of Conferences
Volume 20, 2015
AVE2014 - 4ième Colloque Analyse Vibratoire Expérimentale / Experimental Vibration Analysis
Article Number 02002
Number of page(s) 7
Section Numerical/Experimental combined approach
DOI https://doi.org/10.1051/matecconf/20152002002
Published online 27 January 2015
  1. W. Heylen, S. Lammens, P. Sas, Modal Analysis Theory and Testing (Katholieke Universiteit Leuven, Belgium, 1998) [Google Scholar]
  2. B. Peeters, G. De Roeck, Stochastic system identification for operational modal analysis: a review, Journal of Dynamic Systems, Measurement, and Control 123, pp. 659–667 (2001) [CrossRef] [Google Scholar]
  3. W. Fan, P. Qiao, Vibration-based damage identification methods: a review and comparative study, Structural Health Monitoring 10, pp. 83–111 (2011) [Google Scholar]
  4. M. Basseville, L. Mevel, M. Goursat, Statistical model-based damage detection and localization: subspace-based residuals and damage-to-noise sensitivity ratios, Journal of Sound and Vibration 275, pp. 769–794 (2004) [CrossRef] [Google Scholar]
  5. E. Balmès, M. Basseville, L. Mevel, H. Nasser, W. Zhou, Statistical model-based damage localization: a combined subspace-based and substructuring approach, Structural Control and Health Monitoring 15, pp. 857–875 (2008) [CrossRef] [Google Scholar]
  6. M. Döhler, L. Mevel, F. Hille, Efficient computation of minmax tests for fault isolation and their application to structural damage localization, in Proc. 19th IFAC World Congress (Cape Town, South Africa, 2014) [Google Scholar]
  7. D. Bernal, Load vectors for damage localization, Journal of Engineering Mechanics 128, pp. 7–14 (2002) [CrossRef] [Google Scholar]
  8. E. Reynders, G. De Roeck, A local flexibility method for vibration-based damage localization and quantification, Journal of Sound and Vibration 329, pp. 2367–2383 (2010) [CrossRef] [Google Scholar]
  9. D. Bernal, Load vectors for damage location in systems identified from operational loads, Journal of Engineering Mechanics 136, pp. 31–39 (2010) [CrossRef] [Google Scholar]
  10. M. Raffy, C. Gontier, Statistical asymptotic error on modal parameters in combined deterministic–stochastic identification algorithm, Mechanical Systems and Signal Processing 19, pp. 714–735 (2005) [CrossRef] [Google Scholar]
  11. E. Reynders, R. Pintelon, G. De Roeck, Uncertainty bounds on modal parameters obtained from stochastic subspace identification, Mechanical Systems and Signal Processing 22, pp. 948–969 (2008) [CrossRef] [Google Scholar]
  12. M. Döhler, L. Mevel, Efficient multi-order uncertainty computation for stochastic subspace identification, Mechanical Systems and Signal Processing 38, pp. 346–366 (2013) [CrossRef] [Google Scholar]
  13. M. Döhler, L. Marin, D. Bernal, L. Mevel, Statistical decision making for damage localization with stochastic load vectors, Mechanical Systems and Signal Processing 39, pp. 426–440 (2013) [CrossRef] [Google Scholar]
  14. L. Marin, M. Döhler, D. Bernal, L. Mevel, Robust statistical damage localization with stochastic load vectors, Structural Control and Health Monitoring (2014), in press [Google Scholar]
  15. B. Peeters, G. De Roeck, Reference-based stochastic subspace identification for output-only modal analysis, Mechanical Systems and Signal Processing 13, pp. 855–878 (1999) [CrossRef] [Google Scholar]
  16. M. Döhler, L. Mevel, Fast multi-order computation of system matrices in subspace-based system identification, Control Engineering Practice 20, pp. 882–894 (2012) [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.