Open Access
Issue
MATEC Web of Conferences
Volume 16, 2014
CSNDD 2014 - International Conference on Structural Nonlinear Dynamics and Diagnosis
Article Number 09003
Number of page(s) 7
Section Nonlinear thermal instability
DOI https://doi.org/10.1051/matecconf/20141609003
Published online 01 September 2014
  1. S. Choi, “Enhancing thermal conductivity of fluids with nanoparticles. in: D.A.Siginer, H.P.Wang(Eds.) Development and applications of non-Newtonian flows,” ASME. FED., 231/MD, 66, 99–105, (1995). [Google Scholar]
  2. H. Masuda, A. Ebata, K. Teramae, N. Hishinuma, “Alteration of thermal conductivity and viscosity of liquid by dispersing ultra fine particles Netsu Bussei,”7, 227–233, (1993). [Google Scholar]
  3. S.K. Das, N. Putra, P. Thiesen, W. Roetzel, “Temperature dependence of thermal conductivity enhancement for Nanofluids,” ASME J. Heat Transfer., 125, 567–574, (2003). [CrossRef] [Google Scholar]
  4. J. Buongiorno, W. Hu, “Nanofluid coolant for advanced nuclear power plants,” Paper. No. 5705, Proceedings. ICAPP’05, Seoul., 15–19, (2005). [Google Scholar]
  5. C. Kleinstreuer, J. Li, J. Koo, “Microfluidics of nano-drug delivery,” Int. J. Heat. Mass. Transf., 51, 5590–5597, (2008). [CrossRef] [Google Scholar]
  6. J.A Eastman, S.U.S. Choi, W. Yu, L.J. Thompson, “Thermal Transport in Nanofluids,” Annual. Rev. Mater. Res., 34, 219–246, (2004). [CrossRef] [Google Scholar]
  7. J. Buongiorno, “Convective transport in nanofluids,” ASME. J. Heat. Transfer., 128, 240–250, (2006). [CrossRef] [Google Scholar]
  8. A.V. Kuznetsov, D.A. Nield, “Thermal instability in a porous medium layer saturated by a nanofluid: Brinkman Model,” Transp. Porous. Med., (2009a). [Google Scholar]
  9. A.V. Kuznetsov, D.A. Nield, “Effect of local thermal non-equilibrium on the Onset of convection in porous medium layer saturated by a Nanofluid,” Transp. Porous. Med., 1242-009-9452-8, (2009b). [Google Scholar]
  10. D.A. Nield, A.V. Kuznetsov, “Thermal instability in a porous medium layer saturated by nonofluid,” Int. J. Heat. Mass. Transfer., 52 5796–5801, (2009). [CrossRef] [Google Scholar]
  11. D.A. Nield, A.V. Kuznetsov, “Onset of convection with internal heating in a weakly heterogeneous porous medium,”Transp. Porous. Med., 98, 543–552, (2013). [CrossRef] [Google Scholar]
  12. B.S. Bhadauria, S. Agarwal, “Natural convection in a nanofluid saturated Rotating porous layer: A Nonlinear Study,” Transp. Porous. Med., 87, 585–602, (2011a). [CrossRef] [MathSciNet] [Google Scholar]
  13. B.S. Bhadauria, S. Agarwal, “Convective transport in a nanofuid saturated porous layer with thermal non equilibrium model,” Transp. Porous Med., 88, 107–131 (2011b). [CrossRef] [MathSciNet] [Google Scholar]
  14. G. Venezian, “Effect of modulation on the onset of thermal convection,” J. Fluid. Mech., 35, 243–254, (1969). [CrossRef] [Google Scholar]
  15. P.M. Gresho, R.L. Sani, “The effects of gravity modulation on the stability of a heated fluid layer,” J. Fluid. Mech., 40 (4),783–806 (1970). [CrossRef] [Google Scholar]
  16. A.V. Getling, “Rayleigh-Bénard Convection: Structures and Dynamics World Scientific,” Singapore, (1998). [Google Scholar]
  17. S.H. Davis, “The stability of time periodic flows,” Annu. Rev. Fluid. Mech., 8, 57–74, (1976). [CrossRef] [Google Scholar]
  18. J.C. Umavathi, “Effect of thermal modulation on the onset of convection in a porous medium layer Saturated by a Nanofluid,” Transp. Porous. Medi., 98, 59–79, (2013). [CrossRef] [Google Scholar]
  19. J. Royer, L. Flores, “Two-dimensional naturalconvection in an anisotropic and heterogeneous porous-medium with internal heat-generation” Int. J. Heat. Mass. Transf., 37, 1387–1399, (1994). [CrossRef] [Google Scholar]
  20. R. Gasser, M. Kazimi, “Onset of convection in a porous-medium with internal heat generation,” J. Heat Transf. Trans. ASME., 98, 49–54, (1976). [CrossRef] [Google Scholar]
  21. D.A. Nield, A. Bejan, “Convection in Porous Media,” 4th edn. Springer, New York (2013) [Google Scholar]
  22. B.S. Bhadauria, A. Kumar, J. Kumar, N.C. Sacheti, P. Chandran, “Natural convection in a rotating anisotropic porous layer with internal heat generation,” Transp. Porous. Med., 90, 687–705, (2011). [CrossRef] [Google Scholar]
  23. B.S. Bhadauria, “Double diffusive convection in a saturated anisotropic porous layer with internal heat source,” Transp. Porous. Med., 92, 299–320, (2012). [CrossRef] [Google Scholar]
  24. B.S. Bhadauria, I. Hashim, P.G. Siddheshwar, “Study of heat transport in a porous medium under G-jitter and internal heating effects,” Transp. Porous. Med., 96, 21–37, (2013). [CrossRef] [Google Scholar]
  25. B.S. Bhadauria, I. Hashim, P.G. Siddheshwar, “Effect of internal-heating on weakly non-linear stability analysis of Rayleigh-Bénard convection under gjitter,” Int. J. non-linear. Mech., 54, 35–42, (2013). [CrossRef] [Google Scholar]
  26. B.S. Bhadauria, I. Hashim, P.G. Siddheshwar, “Effects of time-periodic thermal boundary conditions and internal heating on heat transport in a porous medium,” Transp. Porous. Med., 97, 185–200, (2013). [CrossRef] [Google Scholar]
  27. A.V. Kuznetsov, D.A. Nield, “Thermal instability in a porous medium layer saturated by a nanofluid: Brinkman Model,” Trans. Porous. Med., (2009). [Google Scholar]
  28. D.Y. Tzou, “Instability of nanofluids in natural convection” ASME. J. Heat. Transfer., 130, 072401, (2008a). [CrossRef] [Google Scholar]
  29. D.Y. Tzou, “Thermal instability of nanofluids in natural convection” Int. J. Heat. Mass. transfer., 51, 2967–2979, (2008b). [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.