Open Access
MATEC Web of Conferences
Volume 16, 2014
CSNDD 2014 - International Conference on Structural Nonlinear Dynamics and Diagnosis
Article Number 09002
Number of page(s) 7
Section Nonlinear thermal instability
Published online 01 September 2014
  1. S. Chandrasekhar, “Hydrodynamic and Hydromagnetic stability,” Oxford University Press London, (1961).
  2. P.G. Drazin, D.H. Reid, “Hydrodynamic stability,” Cambridge University Press Cambridge, (2004).
  3. G. Venezian, “Effect of modulation on the onset of thermal convection,” J. Fluid. Mech., 35, 243–254, (1969). [CrossRef]
  4. R.J. Donnelly, “Experiments on the stability of viscous flow between rotating cylinders III: enhancement of hydrodynamic stability by modulation,” Proc. R. Soc. Lond. Ser., A, 281, 130–139, (1964). [CrossRef]
  5. S. Rosenblat, D.M. Herbert, “Low frequency modulation of thermal instability,” J. Fluid. Mech., 385–389, (1970). [CrossRef]
  6. S. Rosenblat, G.A. Tanaka, “Modulation of thermal convection instability,” Phys. Fluids., 14(7),1319–1322, (1971). [CrossRef]
  7. C.S. Yih, C.H. Li, “Instability of unsteady flows or configurations, Part 2. Convective instability,” J. Fluid. Mech., 54, 143, (1972). [CrossRef]
  8. K. Kumar, J.K. Bhattacharjee, K. Banerjee, “Onset of the first instability in hydrodynamic flows: effect of parametric modulation,” Phys. Rev., A. 34, 5000–5006, (1986). [CrossRef]
  9. R.G. Finucane, R.E. Kelly, “Onset of instability in afluid layer heated sinusoidally from bellow,” Int. J. Heat. Mass. Transf., 19, 71–85, (1976). [CrossRef]
  10. M.H. Roppo, S.H. Davis, S. Rosenblat, “Bénard convection with time periodic heating,” Phys.Fluids., 27, 796–803, (1984). [CrossRef] [MathSciNet]
  11. P.K. Bhatia, B.S. Bhadauria, “Effect of modulation on thermal convection instability,” Z. Naturforsch., 55a, 957–966, (2000).
  12. B.S. Bhadauria, P.K. Bhatia, “Time periodic heating of Rayleigh-Bénard convection,” Physica. Scripta., 66, 59–65, (2002). [CrossRef]
  13. B.S. Bhadauria, “Temperature modulation of double diffusive convection in a horizontal fluid layer,” Z. Naturforsch., 61a, 335–344, (2006).
  14. B.S. Bhadauria, “Time-periodic heating of Rayleigh-Bénard convection in a vertical magnetic field,” Physica. Scripta., 73(3), (2006). 296–302. [CrossRef]
  15. M.S. Malashetty, M. Swamy, “Efect of thrmal modulation on the onset of convection in rotating fluid ayer,” Int. J. heat. mass. transp., 51, 2814–2823, (2008). [CrossRef]
  16. B.S. Bhadauria, P.K. Bhatia, L. Debnath, “Weakly non-linear analysis of Rayleigh-Bénard convection with time periodic heating,” Int. J. Non-Linear. Mech. 44(1),58–65, (2009). [CrossRef]
  17. V.R.K. Raju, S.N. Bhattacharya, “Onset of thermal instability in a horizontal layer of fluid with modulated boundary temperatures,” J. Engg. Math., 66, 343–351, (2010). [CrossRef]
  18. P.G. Siddheshwar, B.S. Bhadauria, Pankaj Mishra, A.K. Srivastava, “Study of heat transport by stationary magneto convection in a Newtonian liquid under temperature or gravity modulation using Ginzburg-Landau model,” Int. J. non-linear. Mech. 47, 418–425, (2012). [CrossRef]
  19. B.S. Bhadauria, P.G. Siddheshwar, Om.P. Suthar, “Non-linear thermal instability in rotating viscous fluid layer under temperature/gravity modulation,” ASME. J. heat. transf., 34, 102502, (2012). [CrossRef]
  20. B.S. Bhadauria, I. Hashim, P.G. Siddheshwar, “Effects of Time-Periodic Thermal Boundary Conditions and Internal Heating on Heat Transport in a Porous Medium,” Transp. Porous. Media., 97, 185–200, (2013). [CrossRef]
  21. X.Z. Wu, A. Libchaber, “Non-Boussinesq effects in free thermal convection,” Phys. Rev., A43, 2833–2839, (1991).
  22. N.G. Kafoussius, E.M. Williams, “The effect of temperature-dependent viscosity on the free convective laminar boundary layer flow past a vertical isothermal plate,” Acta. Mech., 110, 123–137, (1995). [CrossRef]
  23. N.G. Kafoussius, D.A.S. Rees, “Numerical study of the combined free and forced convective laminar boundary layer flow past a vertical isothermal flat plate with temperature-dependent viscosity,” Acta. Mech., 127, 39–50, (1998). [CrossRef]
  24. M.M. Molla, M.A. Hossain, R.S.R. Gorla, “Natural convection flow from an isothermal circular cylinder with temperature-dependent viscosity,” Heat. Mass. Transf., 41, 594–598 (2005). [CrossRef]
  25. D. Pal, H. Mondal, “Influence of temperature dependent viscosity and thermal radiation on MHD-forced convection over a non-isothermal wedge,” Appl. Math. Comput., 212, 194–208, (2009). [CrossRef]
  26. Ching-Yang Cheng, “Natural convection boundary layer flow of fluid with temperature-dependent viscosity from a horizontal elliptical cylinder with constant surface heat flux,” Appl. Math. Comput., 217, 83–91, (2010). [CrossRef]
  27. S. Nadeem, N.S Akbar, “Effects of temperature dependent viscosity on peristaltic flow of a Jeffrey-six constant fluid in a non-uniform vertical tube,” Commun. Nonlinear. Sci. Numer. Simul., 15, 3950, (2010). [CrossRef]
  28. D.A. Nield, “The effect of temperature-dependent viscosity on the onset of convection in a saturated porous medium,” ASME. J. Heat. Transf., 118, 803–805, (1996). [CrossRef]
  29. B.S. Bhadauria, Palle. Kiran, “Heat transport in an anisotropic porous medium saturated with variable viscosity liquid under temperature modulation,” Transp. Porous. Media., 100, 279–295, (2013). [CrossRef]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.