Open Access
MATEC Web of Conferences
Volume 15, 2014
Building Surveying, Facilities Management and Engineering Conference (BSFMEC 2014)
Article Number 01034
Number of page(s) 9
Published online 19 August 2014
  1. Ulhaq, M. & Alex, L. (2007). Light Weight/Low Cost Construction Methods For Developing Countries. International workshop-cement based material and civil infrastructure (CBM-CI) Karachi, Pakistan, 491–504. [Google Scholar]
  2. Dijik, S. V. (1991). Foamed concrete in Concrete, UK. Slough: British Cement Association. pp. 49–54 [Google Scholar]
  3. Kearsley, E. P. (1996). The use of foamcrete for affordable development in third world countries 232–242. [Google Scholar]
  4. Noordin, N. & Awang, H. (2005). Lightweight Foamed Concrete in Construction. International Conference on Construction and Real Estate Management, The Challenge of Innovation. Building Press., Penang, Malaysia. [Google Scholar]
  5. Ramamurthy, K., Nambiar, E. K. K. & Ranjani, G. I. S. (2009). A classification of studies on properties of foam concrete. Cement and Concrete Composites, 31(6), 388–396 [Google Scholar]
  6. AïTcin, P. C. (2008). Binders for Durable and Sustainable Concrete, London and New york. Taylor & Francis pp.373–513 [Google Scholar]
  7. Siddique, R. & Khan, M. I. (2011). Supplementary Cementing Materials, London New York. Springer. pp. 121–174 [Google Scholar]
  8. Maier, P. L. & Durham, S. A. (2012). Beneficial use of recycled materials in concrete mixtures. Construction and Building Materials, 29, 428–437. [Google Scholar]
  9. Bijen, J. (1996). Benefits of slag and fly ash. Construction and Building Materials, 10(5), 309–314. [CrossRef] [Google Scholar]
  10. TopçU, I. B. & Boga, A. R. (2010). Effect of ground granulate blast-furnace slag on corrosion performance of steel embedded in concrete. Materials and Design, 31, 3358–3365. [CrossRef] [Google Scholar]
  11. Babu, K. G. & Kumar, V. S. R. (2000). Efficiency of GGBS in concrete. Cement and Concrete Research 30, 1031 1036. [Google Scholar]
  12. Memon, N. A., Sumadi, S. R. & Ramli, M. (2007). Performance of high wokability slag-cement mortar for ferrocement. Building and Environment, 42, 2710–2717. [CrossRef] [Google Scholar]
  13. Aydin, S. 2008. Development of a high-temperature-resistant mortar by using slag and pumice. Fire Safety Journal 43, 610–617. [CrossRef] [Google Scholar]
  14. Dehuai, W. & Zhaoyuan, C. (1997). On predicting compressive strength of mortars with ternary blended cement, GGBFS and Fly ash Cement and Concrete Research, 27(4), 487–493. [CrossRef] [Google Scholar]
  15. Aguilar, R. A., Díaz, O. B. & García, J. I. E. (2010). Lightweight concretes of activated metakaolin-fly ash binders, with blast furnace slag aggregates. Construction and Building Materials, 24, 1166–1175. [Google Scholar]
  16. Wee, T.-H., Babu, D. S., Tamilselvan, T. & Lim, H.-S. (2006). Air-Void System of Foamed Concrete and its Effect on Mechanical Properties. ACI Material 103(1), 45–52. [Google Scholar]
  17. Aljoumaily Z. S., Noordin, N., Awang, H. & Almulali, M. Z. (2012). The Effect of Blast Furnace Slag on Foam Concrete in Terms of Compressive Strength. Advanced Materials Research, 587,81-87. [CrossRef] [Google Scholar]
  18. BS EN 196-1:2005 (2005). Methods of testing cement. Determination of strength. BSI, London, UK. [Google Scholar]
  19. ASTM: C 150 Standard Specification for Portland Cement. ASTM international, USA. [Google Scholar]
  20. BS 812-103.1:1985 (1985), Testing aggregates. Method for determination of particle size distribution. Sieve tests. BSI, London, UK. [Google Scholar]
  21. BS EN 15167-1:2006, (2006). Ground granulated blast furnace slag for use in concrete, mortar and grout. Definitions,specifications and conformity criteria. BSI, London, UK. [Google Scholar]
  22. American Concrete Institute (ACI) (2006). 523.1R-06 Guide for Cast-in-Place Low Density Cellular Concrete. [Google Scholar]
  23. Mahmood, Z. S. & Noordin, N. (2010). Low-Medium Cost House “Design And Construction Two Storey House From Lightweight Concrete”. Master, Univesiti Sains Malaysia. [Google Scholar]
  24. Jones, M. R. & Mccarthy, A. (2005a). Preliminary views on the potential of foamed concrete as a structural material. ice, 57(1), 21–31. [Google Scholar]
  25. Jones, M. R. & Mccarthy, A. (2005b). Behaviour and assessment of foamed concrete for construction Applications University of Dundee, UK, 61 – 83. [Google Scholar]
  26. BS EN 12390-3:2009. (2009), Testing hardened concrete. Compressive strength of test specimens. BSI., London, UK. [Google Scholar]
  27. Hamidah, M., Azmi, I., Ruslan, M., Kartini, K. & Fadhil, N. (2005). Optimisation of foamed concrete mix of different sand–cement ratio and curing conditions. (DHIR, R.K., NEWLANDS, M.D. & MCCARTHY, A.), Thomas Telford., University of dundee, Scotland, UK., 37–50. [Google Scholar]
  28. Newman, J. & Owens, P. (2003). Properties of lightweight concrete. In: JOHN NEWMAN, B.S.C. (ed.) Advanced Concrete Technology Processes. USA: Elsevier Ltd. [Google Scholar]
  29. Awang, H., Othuman, M. A. & Roslan, A. F. (2012). Effect of additives on mechanical and thermal properties of lightweight foamed concrete Advances in Applied Science Research, 3(5), 3326–3338. [Google Scholar]
  30. BS EN 12390-6:2009, (2009) Testing hardened concrete. Tensile splitting strength of test specimens. BSI., London, UK. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.