Open Access
Issue |
MATEC Web of Conferences
Volume 14, 2014
EUROSUPERALLOYS 2014 – 2nd European Symposium on Superalloys and their Applications
|
|
---|---|---|
Article Number | 19001 | |
Number of page(s) | 6 | |
Section | Posters: Mechanical Behavior I: Fatigue | |
DOI | https://doi.org/10.1051/matecconf/20141419001 | |
Published online | 29 August 2014 |
- H.J. Christ, A. Jung, H.J. Maier, R. Teteruk, Thermo-mechanical fatigue – Damage mechanisms and mechanism-based life prediction methods. Sadhana, 28, 147–165, (2003) [Google Scholar]
- H. Sehitoglu, H.J. Maier, Thermo-mechanical Fatigue Behaviour of Materials: ASTM STP, 3, 1371. (2000) [Google Scholar]
- M. Sakaguchi, M. Okazaki, Thermo-mechanical and low cycle fatigues of single crystal Ni-base superalloys; Importance of microstructure for life prediction. JSME Journal, 49, 345–354 (2006) [Google Scholar]
- J.J Pernot, T. Nicholas, S. Mall, Modelling thermo-mechanical fatigue crack growth rates in Ti-24Al-11Nb. Int J Fatigue, 16, 111–112 (1994) [CrossRef] [Google Scholar]
- L.F. Coffin, Fatigue at Elevated Temperatures. ASTM STP, 520, 744–782 (1973) [Google Scholar]
- S.S Manson, Fatigue – A complex subject – Some simple approximations. Exp Mech, 5, 193-226 (1965) [Google Scholar]
- J.X. Zhang, H. Harada, Y. Koizumi, T. Kobayashi, Crack appearance of single-crystal nickel-base superalloys after thermomechanical fatigue failure. Scripta Mater, 61, 1105–1108 (2009) [CrossRef] [Google Scholar]
- H. Kang, Y. Lee, J. Chen, J.D. Fan, Thermo-mechanical fatigue damage model for variable temperature and loading amplitude conditions. Int J Fatigue, 29, 1797–1802 (2007) [CrossRef] [Google Scholar]
- M. Okazaki, T. Koizumi, Relationship of crack growth between thermal-mechanical and isothermal low-cycle fatigue at elevated temperatures. J Eng Mater T, 109, 114–118 (1987) [CrossRef] [Google Scholar]
- E.H. Jordan, G.J. Meyers, Fracture mechanics applied to nonisothermal fatigue crack growth. Eng Fract Mech, 23, 345–358 (1986) [CrossRef] [Google Scholar]
- ISO 12111:2011 – Metallic materials – Fatigue testing – Strain-controlled thermo mechanical fatigue testing method. BSI Standards Publication (2011) [Google Scholar]
- P. Hahner, C. Rinaldi, V. Bicego, E. Affeldt, T. Brendel, H. Andersson, T. Beck, H. Klingelhoffer, H. Kuhn, A. Koster, M. Loveday, M. Marchionni, C. Rae, Research and development into a European code-of practice for strain-controlled thermo-mechanical fatigue testing. Int J Fatigue, 30, 372–381 (2007) [CrossRef] [Google Scholar]
- K. Walker, Effects of environment and complex loading history on fatigue life. ASTM STP, 462, 1–14. (1970) [Google Scholar]
- O.H. Basquin, The exponential law of endurance tests. ASTM, 10, 625–630 (1919) [Google Scholar]
- W.J. Evans, J.E. Screech, S.J. Williams, Thermo-mechanical fatigue and fracture of INCO718. Int J Fatigue, 30, 257–267 (2008) [Google Scholar]
- Z. Mroz, An attempt to describe the behaviour of metals under cyclic loads using a more general work-hardening model. Acta Mech, 7, 199–212 (1967) [CrossRef] [Google Scholar]
- R.J. Lancaster, M.T. Whittaker, S.J. Williams, A review of thermo-mechanical fatigue behaviour in polycrystalline nickel superalloys for turbine disc applications. Mater High Temp, 30, 2–12 (2013) [CrossRef] [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.