Open Access
MATEC Web of Conferences
Volume 14, 2014
EUROSUPERALLOYS 2014 – 2nd European Symposium on Superalloys and their Applications
Article Number 09002
Number of page(s) 5
Section Session 9: Precipitation
Published online 29 August 2014
  1. J.R.H. May, M.C. Bache, M.R. Kaylor, and David D., Microstructure and Mechanical Properties of an Advanced Nickel-Based Superalloy in the as-HIP Form, Advanced Materials Research, 278 (2011) 265–270 [Google Scholar]
  2. J.M. Silva, R.A. Cláudio, A. Sousa e Brito, C.M. Branco, J. Byrne, Characterization of Powder Metallurgy (PM) Nickel Base Superalloys for Aeronautical Applications, Materials Science Forum, 514–516 (2006) 495–499 [Google Scholar]
  3. T.P.G. J. Gayda, and P. T. Kantzos, The effect of dual microstructure heat treatment on an advanced Nickel-base disk alloy, Superalloy 2004, (2004) 323–329 [Google Scholar]
  4. R. Reed, The Superalloys Fundamentals and Applications Cambridge university press, Cambridge, 2006 [Google Scholar]
  5. T. Murakumo, T. Kobayashi, Y. Koizumi, H. Harada, Creep behaviour of Ni-base single-crystal superalloys with various γ′ volume fraction, Acta Materialia, 52 (2004) 3737–3744 [Google Scholar]
  6. M.P. Jackson, R.C. Reed, Heat treatment of UDIMET 720Li: the effect of microstructure on properties, Mater. Sci. Eng. A, 259 (1999) 85–97 [CrossRef] [Google Scholar]
  7. R.C. Reed, The SuperAlloys Fundamentals and Applications Cambirdge University Press, Cambridge, 2006 [Google Scholar]
  8. C.E. Campbell, W.J. Boettinger, U.R. Kattner, Development of a diffusion mobility database for Ni-base superalloys, Acta Materialia, 50 (2002) 775–792 [CrossRef] [Google Scholar]
  9. B.S. Bokstein, S.Z. Bokstein, I.T. Spitsberg, Ni self-diffusion in alloyed Ni3Al, Intermetallics, 4 (1996) 517–523 [Google Scholar]
  10. J. Cermak, A. Gazda, V. Rothova, Interdiffusion in ternary Ni3Al/Ni3Al-X diffusion couples with X=Cr, Fe, Nb and Ti, Intermetallics, 11 (2003) 939–946 [Google Scholar]
  11. J. Cermak, V. Rothova, Concentration dependence of ternary interdiffusion coefficients in Ni3Al/Ni3Al–X couples with X=Cr, Fe, Nb and Ti, Acta Mater., 51 (2003) 4411–4421 [Google Scholar]
  12. M. Karunaratne, P. Carter, R. Reed, On the diffusion of aluminium and titanium in the Ni-rich Ni–Al–Ti system between 900 and 1200 C, Acta Mater., 49 (2001) 861–875 [Google Scholar]
  13. D. Blavette, A. Bostel, J. Sarrau, Atom-probe microanalysis of a nickel-base superalloy, Metall. Trans. A, 16 (1985) 1703–1711 [Google Scholar]
  14. M. Watanabe, Z. Horita, M. Nemoto, Absorption correction and thickness determination using the ζ factor in quantitative X-ray microanalysis, Ultramicroscopy, 65 (1996) 187–198 [Google Scholar]
  15. D. Williams, M. Watanabe, D. Carpenter, Thin Film Analysis and Chemical Mapping in the Analytical Electron Microscope, in: G. Love, W.A.P. Nicholson, A. Armigliato (Eds.) Modern Developments and Applications in Microbeam Analysis, Springer Vienna, 1998, pp. 49–57 [CrossRef] [Google Scholar]
  16. M. Watanabe, D. Williams, The quantitative analysis of thin specimens: a review of progress from the Cliff-Lorimer to the new ζ-factor methods, J. Microsc.-Oxford, 221 (2006) 89–109 [CrossRef] [Google Scholar]
  17. M. Preuss, P.J. Withers, J.W.L. Pang, G.J. Baxter, Inertia welding nickel-based superalloy: Part I. Metallurgical characterization, Metallurgical and Materials Transactions A, 33 (2002) 3215–3225 [CrossRef] [Google Scholar]
  18. D. Mukherji, R. Müller, R. Gilles, P. Strunz, J. Rösler, G. Kostorz, Nanocrystalline Ni3Al-type intermetallic phase powder from Ni-base superalloys, Nanotechnology, 15 (2004) 648–657 [Google Scholar]
  19. Y. Chen, T. Slater, E. Lewis, E. Francis, M.G. Burke, M. Preuss, S.J. Haigh, Measurement of size-dependent composition variations for gamma prime (γ′) precipitates in an commercial nickel-based superalloy, Under review, (2014) [Google Scholar]
  20. N. Dupin, B. Sundman, A thermodynamic database for Ni-base superalloys, Scand. J. Metall., 30 (2001) 184–192 [Google Scholar]
  21. I. Ansara, B. Sundman, P. Willemin, Thermodynamic modeling of ordered phases in the N-Al system, Acta Metall., 36 (1988) 977–982 [Google Scholar]
  22. C. Jiang, B. Gleeson, Site preference of transition metal elements in Ni3Al, Scripta Mater., 55 (2006) 433–436 [Google Scholar]
  23. M.K. Miller, J.A. Horton, Site occupation determinations by APFIM for Hf, Fe, and Co in Ni3Al, Scripta Mater. Metall., 20 (1986) 1125–1130 [Google Scholar]
  24. D. Shindo, M. Kikuchi, M. Hirabayashi, S. Hanada, O. Izumi, Site determination of Fe, Co and Cr atoms added in Ni3Al by electron channeling enhanced microanalysis [J], Trans. JIM., 29 (1988) 956–961 [Google Scholar]
  25. C. Booth-Morrison, Z. Mao, R.D. Noebe, D.N. Seidman, Chromium and tantalum site substitution patterns in Ni3Al(L12)γ′-precipitates, App. Phys. Lett., 93 (2008) 033103 [Google Scholar]
  26. J. Robson, Modelling the evolution of particle size distribution during nucleation, growth and coarsening, Materials Science and Technology, 20 (2004) 441–448 [Google Scholar]
  27. R.J. Braun, J.W. Cahn, G.B. McFadden, H.E. Rushmeier, A.A. Wheeler, Theory of anisotropic growth rates in the ordering of an f.c.c. alloy, Acta Mater., 46 (1998) 1–12 [Google Scholar]
  28. P. Gopal, S.G. Srinivasan, First-principles study of self- and solute diffusion mechanisms in γ′-Ni3Al, Physical Review B, 86 (2012) 014112 [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.