Open Access
Issue
MATEC Web of Conferences
Volume 13, 2014
ICPER 2014 - 4th International Conference on Production, Energy and Reliability
Article Number 02036
Number of page(s) 5
Section Energy and Fuel Technology
DOI https://doi.org/10.1051/matecconf/20141302036
Published online 17 July 2014
  1. M. J. Brown, A. J. Sutton, P. R. Bell, R. D. Sayers., A Meta Analysis of 50 Years of Ruptured Abdominal Aortic Aneurysm Repair. Br J Surg (2002). 89. p: 714-730. [CrossRef] [Google Scholar]
  2. C. Basciano, C. Kleinstreuer, S. Hyun, and E. A. Finol., A Relation Between Near-Wall Particle-Hemodynamics and Onset of Thrombus Formation in Abdominal Aortic Aneurysms. Annals of Biomedics Engineering, 2011. 39(7): p. 2010–2026. [CrossRef] [Google Scholar]
  3. J. R. Blake, W. J. Easson, and P. R. Hoskins., A Dual Phantom System for Validation of Velocity Measurements in Stenosis Models Under Steady Flow. Elsevier Journal Ultrasound in Medical and Biology. 2009. 35(9): p. 1510–1524. [CrossRef] [Google Scholar]
  4. HarveyHo, JianWu and P. Hunter., Blood Flow Simulation in a Giant Intracranial Aneurysm and Its Validation by Digital Subtraction Angiography. Springer science. 2011. [Google Scholar]
  5. B. Luo, X. Yang, S. Wang, H. Li, J. Chen, H. Yu, Y. Zhang, Y. Zhang, S. Mu, Z. Liu and G. Ding., High Shear Stress and Flow Velocity in Partially Occluded Aneurysms Prone to Recanalization. Journal of American Heart Association, 2011. 42: p. 745–753. [Google Scholar]
  6. V. L. Rayz, L. Boussel, M. T. Lawton, G. Acevedo-Bolton, L. Ge, W. L. Young, R. T. Higashida and D. Saloner., Numerical Modelling of the Flow in Intracranial Aneurysms: Prediction of Regions Prone to Thrombus Formation. Journal of Biomedical Engineering, 2008. 36: p. 1793–1804. [Google Scholar]
  7. K. Kono, N. Tomura, R. Yoshimura, and T. Terada, “Changes in wall shear stress magnitude after aneurysm rupture,” Acta Neurochir, vol. 155, pp. 1559–1563, 2013. [CrossRef] [Google Scholar]
  8. G. J. Sheard., Flow Dynamics and Wall Shear Stress Variation in a Fusiform Aneurysm. Journal Eng Math (2009). 64. p: 379–390. [CrossRef] [Google Scholar]
  9. S. O’ Callaghan, M. Walsh and T. McGloughlin., Numerical modelling of Newtonian and non-Newtonian representation of blood in a distal end-to-side vascular bypass graft anastomosis. science direct elsevier 2006. 28: p. 70–74. [Google Scholar]
  10. P. R. Hoskins and D. Hardman., three-dimensional imaging and computational modelling for estimation of wall stresses in arteries. British Journal of Radiology, 2009. 82: p. S3–S17. [CrossRef] [Google Scholar]
  11. K. V. Sendstad, K. A. Mardal, M. Mortensen, B. A. P. Reif and H. P. Langtangen., Direct Numerical Simulation of Transitional Flow in a Patient-Spesific Intracranial Aneurysm. Journal of Biomechanics Elsevier, 2011. 44: p. 2826–2832. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.