Open Access
Issue
MATEC Web of Conferences
Volume 6, 2013
Concrete Spalling due to Fire Exposure: Proceedings of the 3rd International Workshop
Article Number 05003
Number of page(s) 8
Section Advanced Modeling for Spalling Risk Assessment
DOI https://doi.org/10.1051/matecconf/20130605003
Published online 17 September 2013
  1. Connolly, R.J., The spalling of concrete in fires, PhD Thesis, Aston University, 1995. [Google Scholar]
  2. Khoury, G.A., Effect of fire on concrete and concrete structures, Progress Struct Eng Mat, 2, 429–447, 2000. [CrossRef] [Google Scholar]
  3. Kalifa P., Chene G. and Galle C., High-temperature behaviour of HPC with polypropylene fibers: From spalling to microstructure, Cem Concr Res, 31, 1487–1499, 2001. [CrossRef] [Google Scholar]
  4. Zeiml M., Leithner D., Lackner R. and Mang H.A., How do polypropylene fibers improve the spalling behaviour of in-situ concrete. Cem Concr Res, 36, 29–942, 2006. [CrossRef] [Google Scholar]
  5. Zeiml M., Lackner R., Leithner D. and Eberhardsteiner J., Identification of residual gas-transport properties of concrete subjected to high temperatures, Cem Concr Res, 38, 699–716, 2008. [CrossRef] [Google Scholar]
  6. Kollek J.J., The determination of permeability of concrete by CEMBureau method: a recommendation, Mater Struct, 22, 225–230, 1989. [CrossRef] [Google Scholar]
  7. Periškić G., Entwicklung eines 3D thermo-hygro-mechanischen Modells für Beton unter Brandbeanspruchung und Anwendung auf Befestigungen unter Zuglasten, PhD Thesis, University of Stuttgart, 2009. [in German] [Google Scholar]
  8. Ožbolt J., Li Y.J. and Kožar I., Microplane model for concrete with relaxed kinematic constraint, Int J Solids Struct, 38, 2683–2711, 2001. [CrossRef] [Google Scholar]
  9. Klinkenberg L.J., The permeability of porous media to liquids and gases, American Petroleum Institute, Drilling Production Practice, 200–213, 1941. [Google Scholar]
  10. Bošnjak J., Ožbolt J., Sharma A. and Periškić G., Permeability of concrete at high temperatures and modelling of explosive spalling, Proceedings of FraMCoS-8, Van Mier, Ruiz, Andrade, Yu and Zhang (Eds), Toledo, Spain, 11/3–14/3, 2013. [Google Scholar]
  11. Khoury G.A, Strain of heated concrete during two thermal cycles – Parts 1,2 and 3, Mag Concr Res, 58, 367–385, 2006 [CrossRef] [Google Scholar]
  12. 387–400 and 58, 421–435, 2006. [Google Scholar]
  13. Hager I., Propriétés mécaniques des bétons à haute performanceà haute température – évolution des principales propriétés mécaniques, PhD Thesis, Ecole Nationale des Ponts et Chaussées, 2004. [in French] [Google Scholar]
  14. Mindeguia J-C., Hager I., Pimienta P., Carre H., Borderie C., Parametric study of transient thermal strain of ordinary and high performance concrete, Cem Concr Res, 48, 40–52, 2013. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.