Open Access
MATEC Web of Conferences
Volume 6, 2013
Concrete Spalling due to Fire Exposure: Proceedings of the 3rd International Workshop
Article Number 05002
Number of page(s) 8
Section Advanced Modeling for Spalling Risk Assessment
Published online 17 September 2013
  1. G. A. Khoury and Y. Anderberg, Fire Safety Design - concrete spalling review - report submitted to the Swedish National Road Administration, Sweden, 2000. [Google Scholar]
  2. J. Horvath, U. Schneider and U. Diederichs, Beiträge zum Abplatzverhalten von Hochleistungsbetonen (in German) - Schriftenreihe Institut für Baustoffehre, Bauphysik und Brandschutz, Heft 11, TU Wien, Vienna, Austria: TU Vienna, Institute for Building Materials, Buildings Physics and Fire Protection, 2004. [Google Scholar]
  3. C. Alonso and L. Fernandez, “Dehydration and rehydration processes of cement paste exposed to high temperature environments,” Journal of materials science, vol. 39, no. 9, pp. 3015–3024, 2004. [Google Scholar]
  4. RILEM Technical Committee HTC, Behaviour of concrete at high temperatures - State of art report - part 1 - ordinary concrete, Bagneux, France: RILEM publications S.A.R.L., 2004. [Google Scholar]
  5. J. C. Mindeguia,Contribution expérimentale a la compréhension des risques d'instabilité thermique des bétons (in French) - PhD thesis l'université de Pau et Pays de L'adour, Pau, France, 2009. [Google Scholar]
  6. M. Zeiml, R. Lackner, D. Leithner and J. Eberhardsteiner, “Identification of residual gas-transport properties of concrete subjected to high temperatures,” Cement and Concrete Research, vol. 38, no. 5, pp. 699–716, 2008. [CrossRef] [Google Scholar]
  7. fib working party 4.3-1, Fire design of concrete structures: materials, structures and modelling - state of art report, Lausanne, Switzerland: International Federation for Structural Concrete (fib), 2007. [Google Scholar]
  8. K. Kordina, Das Verhalten von Stahlbeton- und Spannbetonbauteilen unter Feuerangriff (in German) - Heft 2, Braunschweig, Germany: Institut für Baustoffkunde und Stalbetonbau der Technischen Hochschule Braunschweig, 1963. [Google Scholar]
  9. P. Kalifa, F. D. Mennetau and D. Quenard, “Spalling and pore pressure in HPC at high temperatures,” Cement and Concrete Research, vol. 30, no. 12, pp. 1915–1927, 2000. [Google Scholar]
  10. G. H. A. Van der Heijden, NMR imaging of moisture inside heated porous building materials - PhD thesis TU Eindhoven, Eindhoven, The Netherlands, 2011. [Google Scholar]
  11. Z. P. Bažant, “B. 10 - Analysis of pore pressure, thermal stress and fracture in rapidly heated concrete,” in NIST special publication 919 - Proceedings International Workshop on Fire Perfromance of High-Strength Concrete, Gaithersburg, United States of America, 1997. [Google Scholar]
  12. K. van Breugel, C. R. Braam, C. van der Veen and J. C. Walraven, Betonconstructies onder temperatuur- en krimpvervormingen (BP2), Boxtel, The Netherlands: Aeneas, 1998. [Google Scholar]
  13. B. B. G. Lottman, Fire in bored tunnels - structural behaviour, during fire conditions, of bored tunnels made with a concrete segmental lining - MsC thesis TU Delft, Delft, The Netherlands, 2007. [Google Scholar]
  14. B. B. G. Lottman, E. A. B. Koenders and J. C. Walraven, “Towards a model for fire resistant design of concrete elements,” in Proceedings of the 1st International Workshop on Concrete Spalling due to Fire Exposure, Leipzig, Germany, 2009. [Google Scholar]
  15. B. B. G. Lottman, E. A. B. Koenders and J. C. Walraven, “Macro-scale spalling model: a fracture mechanics versus pore pressure approach,” in Proceedings of the 2nd International RILEM Workshop on Concrete Spalling due to Fire Exposure, Delft, The Netherlands, 2011. [Google Scholar]
  16. M. Hassanizadeh and W. G. Gray, “General conservation equations for multi-phase systems 1: averaging procedure,” Advances in Water Resources, vol. 2, pp. 131–144, 1979. [CrossRef] [Google Scholar]
  17. M. Hassanizadeh and W. G. Gray, “General conservation equations for multi-phase systems 2: mass, momenta, energy and entropy equations,” Advances in Water Resources, vol. 2, pp. 191–203, 1979. [CrossRef] [Google Scholar]
  18. J. M. Moran and H. N. Shapiro, Fundamentals of Engineering Thermodynamics - 5th Edition, Hoboken, United States of America: John Wiley & Sons Inc., 2004. [Google Scholar]
  19. D. Gawin, F. Pesavento and B. A. Schrefler, “Modelling of hygro-thermal behaviour of concrete at high temperature with thermo-chemical and mechanical material degradation,” Computer Methods in Applied Mechanics and Engineering, vol. 192, no. 13–14, pp. 1731–1771, 2003. [Google Scholar]
  20. C. T. Davie, C. J. Pearce and N. Bićanić, “Coupled heat and moisture transport in concrete at elevated temperatures - effects of capillary pressure and adsorbed water,” Numerical Heat Transfer, Part A: Applications, vol. 49, no. 8, pp. 763–773, 2006. [Google Scholar]
  21. S. J. F. Erich, A. B. M. van Overbeek, G. H. A. van der Heijden, L. Pel, H. P. Huinink, W. H. A. Peelen and A. H. J. M. Vervuurt, “Validation of FEM models describing moisture transport in heated concrete by Magnetic Resonance Imaging,” Heron, vol. 53, no. 4, pp. 225–246, 2008. [Google Scholar]
  22. J. van Kan, A. Segal and F. Vermolen, Numerical methods in scientific computing, Delft, The Netherlands: VSSD, 2008. [Google Scholar]
  23. E. Schlangen, Experimental and numerical analysis of fracture processes in concrete - PhD thesis TU Delft, Delft, The Netherlands, 1993. [Google Scholar]
  24. A. H. J. M. Vervuurt, Interface fracture in concrete - PhD thesis TU Delft, Delft, The Netherlands, 1997. [Google Scholar]
  25. G. N. Wells, Lecture notes course CT5123 - the finite element method: an introduction, Delft, The Netherlands: Faculty of Civil Engineering and Geosciences - Delft University of Technology, 2006. [Google Scholar]
  26. D. L. Logan, A first course in the finite element method, Stamford, United States of America: Cengage Learning, 2012. [Google Scholar]
  27. N. Noda, R. B. Hetnarski and Y. Tanigawa, Thermal stresses, New York, United States of America: Taylor & Francis, 2003. [Google Scholar]
  28. J. H. H. Fellinger, Shear and anchorage behaviour of fire exposed hollow core slabs - PhD thesis TU Delft, Delft, The Netherlands: Delft University Press, 2004. [Google Scholar]
  29. F. Hartmann and C. Katz, Structural analysis with finite elements, Berlin Heidelberg, Germany: Springer-Verlag, 2007. [CrossRef] [Google Scholar]
  30. V. Yadama and K. England, Lecture Notes course CE 537: natural fiber thermoplastic composites - rule of mixtures, Pullman, United States of America: Washington State University - Departement of Civil & Environmental Engineering, 2007. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.