Open Access
Issue
MATEC Web of Conferences
Volume 1, 2012
CSNDD 2012 – International Conference on Structural Nonlinear Dynamics and Diagnosis
Article Number 05002
Number of page(s) 6
Section Passive Control of Structures via Nonlinear Energy Sinks
DOI https://doi.org/10.1051/matecconf/20120105002
Published online 09 July 2012
  1. S.A. Tobias and W. Fishwick. Theory of regenerative machine tool chatter. Engineer, 205:199–203, 1958. [Google Scholar]
  2. B.P. Mann, T. Insperger, G. Stépán, and P.V. Bayly. Stability of up-milling and down-milling, part 2 : experimental verification. International Journal of Machine Tools and Manufacture, 43:35–40, 2003. [Google Scholar]
  3. E. Gourc, S. Seguy, and L. Arnaud. Chatter milling modeling of active magnetic bearing spindle in highspeed domain. International Journal of Machine Tools and Manufacture, 51:928–936, 2011. [CrossRef] [Google Scholar]
  4. A.H. Nayfeh and N.A. Nayfeh. Analysis of the cutting tool on a lathe. Nonlinear Dynamics, 63:395–416, 2010. [CrossRef] [Google Scholar]
  5. S. Seguy, T. Insperger, L. Arnaud, G. Dessein, and G. Peigné. Suppression of period doubling chatter in high-speed milling by spindle speed variation. Machining Science and Technology, 15:153–171, 2011. [CrossRef] [Google Scholar]
  6. N.D. Sims. Vibration absorbers for chatter suppression: a new analytical tuning methodology. Journal of Sound and Vibration, 301:592–607, 2007. [CrossRef] [Google Scholar]
  7. H. Moradi, F. Bakhtiari-Nejad, and M.R. Movahhedy. Tuneable vibration absorber design to suppress vibrations: an application in boring manufacturing process. Journal of Sound and Vibration, 318:93–108, 2008. [CrossRef] [Google Scholar]
  8. A. Harms, B. Denkena, and N. Lhermet, Tool adaptator for active vibration control in turning operations. In 9th International Conference on New Actuators, Brême, Germany, 2004. [Google Scholar]
  9. M. Wang. Feasibility study of nonlinear tuned mass damper for machining chatter suppression. Journal of Sound and Vibration, 330:1917–1930, 2011. [CrossRef] [Google Scholar]
  10. O.V. Gendelman, E. Gourdon, and C.H. Lamarque. Quasiperiodic energy pumping in coupled oscillators under periodic forcing. Journal of Sound and Vibration, 294(4-5):651–662, 2006. [CrossRef] [Google Scholar]
  11. O.V. Gendelman. Bifurcations of nonlinear normal modes of linear oscillator with strongly nonlinear damped attachment. Nonlinear Dynamics, 37:115–128, 2004. [CrossRef] [MathSciNet] [Google Scholar]
  12. O.V. Gendelman and T. Bar. Bifurcations of selfexcitation regimes in a van der pol oscillator with a nonlinear energy sink. Physica D: Nonlinear Phenomena, 239(3–4):220–229, 2010. [CrossRef] [Google Scholar]
  13. Y. Starosvetsky and O.V. Gendelman. Strongly modulated response in forced 2dof oscillatory system with essential mass and potential asymmetry. Physica D: Nonlinear Phenomena, 237(13):1719–1733, 2008. [CrossRef] [Google Scholar]
  14. T. Kalmár-Nagy, G. Stépán, and F.C. Moon. Subcritical hopf bifurcation in the delay equation model for machine tool vibrations. Nonlinear Dynamics, 26:121–142, 2001. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.