Issue |
MATEC Web Conf.
Volume 408, 2025
44th Conference of the International Deep Drawing Research Group (IDDRG 2025)
|
|
---|---|---|
Article Number | 02037 | |
Number of page(s) | 2 | |
Section | Technical Notes | |
DOI | https://doi.org/10.1051/matecconf/202540802037 | |
Published online | 07 May 2025 |
The effect of retained austenite stability on the formability of third generation advanced high strength steel
Application Engineering Group, Hyundai Steel,
Danjin, South Korea
* Corresponding author: gyim88@hyundai-steel.com
This study aims to evaluate the effect of retained austenite (RA) stability on the performance of third-generation advanced high-strength steel (AHSS). The analysis focuses on two quenching and partitioning (Q&P) steels with a minimum tensile strength designation above 1.0 GPa. Additionally, two conventional dual-phase (DP) steels with tensile strengths of 780 MPa and 1.0 GPa were included for comparison. The retained austenite stability of the Q&P steels was first assessed through tensile testing by observing changes in the retained austenite volume fraction. Subsequently, its impact on formability was investigated by comparing formability parameters, including instantaneous n-values, hole expansion ratio (HER), limit drawing ratio (LDR), bending angle, and forming limit curve (FLC). Furthermore, a hydrogen-induced cracking (HIC) test was conducted on drawn cups to explore the relationship between retained austenite stability and resistance to hydrogen embrittlement. The results demonstrate that the stability of retained austenite plays a significant role in determining the overall formability and performance of third generation AHSS.
Key words: Retained austenite / Third generation steel / Formability / Hydrogen Embrittlement
© The Authors, published by EDP Sciences, 2025
This is an Open Access article distributed under the terms of the Creative Commons Attribution License 4.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.