Issue |
MATEC Web Conf.
Volume 368, 2022
NEWTECH 2022 – The 7th International Conference on Advanced Manufacturing Engineering and Technologies
|
|
---|---|---|
Article Number | 01020 | |
Number of page(s) | 2 | |
Section | Advanced Manufacturing Engineering and Technologies | |
DOI | https://doi.org/10.1051/matecconf/202236801020 | |
Published online | 19 October 2022 |
An Inverse Analysis Method Applied to Optimization of Specimen’s Shape for Performing Hot Rapid Crushing Tests from Homogeneous Initial Temperature Field
National Institute of Applied Sciences of Rennes, Rennes 35708, France
* adinel.gavrus@insa-rennes.fr
Specific experimental tests with loadings conditions close to those of industrial fast forming processes as rapid forging, rapid stamping or high speed machining, characterized by large plastic strains, localized deformations and important gradients of strain rates, strain and temperature, requires to analyses material flow behavior at different initial temperatures. One of the more important conditions to obtain intrinsic rheological constitutive equations is to have a quasi-homogenous initial temperature distribution and especially to keep constant the material microstructure during the specimens heating. The rapid induction heating seems to be one of the most reliable processes. This scientific study proposes an inverse analysis technique based on numerical finite element modelling to define on the thermal point of view, optimal specimen shapes for performing hot rapid crushing tests from homogenous initial temperature field.
Key words: Hot SHPB pressing / Thermal Cooling / FEM / Inverse Analysis
© The Authors, published by EDP Sciences, 2022
This is an Open Access article distributed under the terms of the Creative Commons Attribution License 4.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.