Issue |
MATEC Web Conf.
Volume 355, 2022
2021 International Conference on Physics, Computing and Mathematical (ICPCM2021)
|
|
---|---|---|
Article Number | 03025 | |
Number of page(s) | 7 | |
Section | Computing Methods and Computer Application | |
DOI | https://doi.org/10.1051/matecconf/202235503025 | |
Published online | 12 January 2022 |
Prediction of PM2.5 concentration based on BP neural network optimized by bee colony algorithm
School of information engineering, Mianyang Normal University, Mianyang 621000, Sichuan
* Corresponding author: 562863252@qq.com
According to the ambient air pollutants data and meteorological conditions data of Mianyang City in 2017, the BP neural network model based on MATLAB is established to predict the daily average PM2.5 concentration of Mianyang City in the next two days. However, the traditional BP network has the disadvantages of slow convergence speed and easy to fall into local optimum. In order to improve the prediction accuracy of the model, an optimization algorithm is added to the prediction model to avoid the model falling into local minimum. In this paper, the bee colony algorithm is added to the prediction model to improve the accuracy of BP neural network prediction model. The data from January to November are used for training, and the data from December are used as the verification results. The results show that the optimization model can accurately predict the daily average PM2.5 concentration of Mianyang City in the next two days, which provides a new idea for the prediction of PM2.5 concentration of the city, provides a theoretical basis for the early warning and decision-making of air pollution, and also provides more reliable prediction services for people’s daily travel.
Key words: Haze / Prediction model / BP neural network / Bee colony algorithm
© The Authors, published by EDP Sciences, 2022
This is an Open Access article distributed under the terms of the Creative Commons Attribution License 4.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.