Issue |
MATEC Web Conf.
Volume 173, 2018
2018 International Conference on Smart Materials, Intelligent Manufacturing and Automation (SMIMA 2018)
|
|
---|---|---|
Article Number | 03004 | |
Number of page(s) | 6 | |
Section | Digital Signal and Image Processing | |
DOI | https://doi.org/10.1051/matecconf/201817303004 | |
Published online | 19 June 2018 |
Research on Financial Early-warning based on GIHS Improved BP_AdaBoost Algorithm
School of Information Engineering, Anhui Xinhua University, Hefei China, 230088
To improve the accuracy of the financial early warning of the company, aiming at defects of slow learning speed, trapped in local solution and inaccurate operating result of the traditional BP neural network with random initial weights and thresholds, a parallel ensemble learning algorithm based on improved harmony search algorithm using good point set (GIHS) optimize the BP_Adaboost is proposed. Firstly, the good-point set is used to construct a more high quality initial harmony library, and it adjusts the parameters dynamically during the search process and generates several solutions in each iteration so as to make full use of information of harmony memory to improve the global search ability and convergence speed of algorithm. Secondly, ten financial indicators are chosen as the inputs of BP neural network value, and GIHS algorithm and BP neural network are combined to construct the parallel ensemble learning algorithm to optimize BP neural network initial weights value and output threshold value. Finally, many of these weak classifier is composed as strong classifier through the AdaBoost algorithm. The improved algorithm is validated in the company's financial early warning. Simulation results show that the performance of GIHS algorithm is better than the basic HS and IHS algorithm, and the GIHS-BP_AdaBoost classifier has higher classification and prediction accuracy.
© The Authors, published by EDP Sciences, 2018
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.