Issue |
MATEC Web Conf.
Volume 349, 2021
6th International Conference of Engineering Against Failure (ICEAF-VI 2021)
|
|
---|---|---|
Article Number | 03015 | |
Number of page(s) | 8 | |
Section | Components and Structural Elements in Engineering Applications: Design, Detections of Defects, Structural Health Monitoring | |
DOI | https://doi.org/10.1051/matecconf/202134903015 | |
Published online | 15 November 2021 |
Automated detection-classification of defects on photo-voltaic modules assisted by thermal drone inspection
1 Department of Materials Science and Engineering, University of Ioannina, 45110, Greece
* Corresponding author: lgergidi@uoi.gr
A new computational procedure is proposed for the automated detection-classification of defects on photovoltaic (PV) modules-panels. Thermal imaging or IR thermography is an important and powerful non-destructive technique for the investigation of structural or operational defects on PV modules and when it is combined with drones can provide a fully automated inspection, detection and defect classification procedure. The aforementioned image processing approach adopts pre- and post-processing tools and methodologies assisting the infrared (IR) thermography for the evaluation of a photovoltaic (PV) module performance. In particular, the passive approach of IR thermography was adopted, a portable thermal imager was used for the in-situ acquisition of images that show the distribution of infrared luminance of the PV panel surface. The acquired images are processed and analyzed for the detection and classification of defects and hot spots on the module’s surface that are potential candidates for faulty operation. The proposed computational methodology adopts gaussian filters for the IR images, thresholding operations, morphological transformations and Artificial Neural Networks. The use of IR thermography assisted by Unmanned Aerial Vehicles (UAVs) for the inspection of PV modules-panels proved to be a very reliable and efficient tool towards the automated detection-classification of defects.
© The Authors, published by EDP Sciences, 2021
This is an Open Access article distributed under the terms of the Creative Commons Attribution License 4.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.