Issue |
MATEC Web Conf.
Volume 349, 2021
6th International Conference of Engineering Against Failure (ICEAF-VI 2021)
|
|
---|---|---|
Article Number | 02018 | |
Number of page(s) | 8 | |
Section | Metallic Materials: Characterization, Mechanical Behavior and Modeling, Detection of Metal Failures | |
DOI | https://doi.org/10.1051/matecconf/202134902018 | |
Published online | 15 November 2021 |
A customized electrical potential difference method for in situ monitoring of propagating cracks using a stochastic algorithm
1 Machine Design Laboratory, School of Mechanical Engineering, National Technical University of Athens, Greece
2 Machine Elements and Vehicle Laboratory, Department of Mechanical Engineering, School of Engineering, University of West Attica, Greece
* Corresponding author E-mail address: adtsolakis@uniwa.gr
In this paper, a modified direct current potential drop (DCPD) method for real-time measurement of the length, the inclination and the position of cracks is presented. Based on the proposed configuration, it is possible to process the data acquired by continuously measuring the change in the electrical resistance (potential drop) between specific points on the specimen in real time and correlate them with the propagation of the crack and thus identifying its crucial characteristics. Furthermore, many aspects that affect the electromagnetic field inside materials have been identified. In that way the influence of unwanted factors can be significantly reduced which has led to a better understanding of the relation between the implemented voltage values and the fracture itself. Therefore, conclusions are drawn about the structural integrity of any given specimen through a risk assessment after the crack characteristics have been calculated. In order to achieve this, a variety of techniques were implemented including the development of a stochastic algorithm along with a customized experimental layout so as to accomplish high accuracy for the prediction model as well as robustness towards other influencing parameters such as temperature and humidity.
Key words: Crack / Fatigue / Structural health monitoring / Potential drop method / Real-time measurement
© The Authors, published by EDP Sciences, 2021
This is an Open Access article distributed under the terms of the Creative Commons Attribution License 4.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.