Issue |
MATEC Web Conf.
Volume 349, 2021
6th International Conference of Engineering Against Failure (ICEAF-VI 2021)
|
|
---|---|---|
Article Number | 02015 | |
Number of page(s) | 8 | |
Section | Metallic Materials: Characterization, Mechanical Behavior and Modeling, Detection of Metal Failures | |
DOI | https://doi.org/10.1051/matecconf/202134902015 | |
Published online | 15 November 2021 |
Effect of Fly Ash on the Electrochemical Performance of 316L Stainless Steel Concrete Reinforcement in Saline Environments Attacked by Acid Rain
1 Laboratory of Applied Metallurgy, Department of Materials Science and Engineering, School of Engineering, University of Ioannina, 45110, Ioannina, Greece
2 Institute of Materials Science and Computing, University Research Center of Ioannina (URCI), 45110, Ioannina, Greece
* Corresponding author: alekatou@uoi.gr
The present study investigates the effect of fly ash (FA) as a corrosion inhibitor on the electrochemical performance of 316L stainless steel concrete reinforcement in a simulating concrete pore solution exposed to a coastal environment that is severely polluted by acid rain (AR). The corrosion behavior of 316L stainless steel is examined by means of cyclic (reverse) polarization in order to evaluate the susceptibility of 316L rebars to localized corrosion. A slightly alkaline solution simulating corroded concrete that has exposed the reinforcement directly to acid rain attack (pH ≈ 8) was chosen as electrolyte. The solution contained Ca(OH)2 partially replaced by FA (0 wt.% - 25 wt.%), an acid rain simulating solution and 3.5 wt% NaCl. The beneficial effect of FA partially replacing Ca(OH)2 (up to 20 wt.% FA) on the corrosion resistance of 316L rebars was manifested by slower corrosion kinetics, nobler corrosion potentials and less susceptibility to localised corrosion. However, these trends were reversed at 25 wt.% FA. The above performance was compared with the corrosion performance in the same electrolyte but without the addition of 3.5 wt.% NaCl.
© The Authors, published by EDP Sciences, 2021
This is an Open Access article distributed under the terms of the Creative Commons Attribution License 4.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.