Issue |
MATEC Web Conf.
Volume 348, 2021
The 2nd International Network of Biomaterials and Engineering Science (INBES’2021)
|
|
---|---|---|
Article Number | 01008 | |
Number of page(s) | 9 | |
DOI | https://doi.org/10.1051/matecconf/202134801008 | |
Published online | 17 November 2021 |
Multi-scale physico-chemical characterization of CEB/ANS bio-composites
1 Research Team Materials, Mechanics and Civil Engineering, ENSA AGADIR, 80000, Morocco
2 Research Team Materials, Microstructures and Mechanical Engineering, Polytechnic, AGADIR, 80000, Morocco
* Corresponding author: hajarakhzouz@gmail.com
In a vision to identify the non-linear behaviour of the compressed earth blocks (CEB) reinforced by the Argan nut shells particles (ANS) influenced by many parameters like the shape, the distribution and the quantity of the stabilizers, as well as the interactions between both phases: matrix and reinforcement. The use of numerical models seems to be indispensable. Yet, simulations of heterogeneous structures quickly become unaffordable by direct calculations on finite element software. Therefore, a homogenization of the experimental, analytical, and numerical macrostructure is performed. Thus, an overall micro-mesomacro approach to modelling the mechanical behaviour of CEB/CNA bio-composites has been established. It is mainly based on the notion of the representative elementary volume with two different structures (periodic structure and structure with a poisson distribution). The numerical and analytical homogenization results were validated by the Young’s modulus values resulting from the experimental compression test and the corresponding stress-strain curves.
© The Authors, published by EDP Sciences, 2021
This is an Open Access article distributed under the terms of the Creative Commons Attribution License 4.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.