Issue |
MATEC Web Conf.
Volume 346, 2021
International Conference on Modern Trends in Manufacturing Technologies and Equipment (ICMTMTE 2021)
|
|
---|---|---|
Article Number | 03103 | |
Number of page(s) | 13 | |
Section | Mechanical Engineering | |
DOI | https://doi.org/10.1051/matecconf/202134603103 | |
Published online | 26 October 2021 |
Control Algorithm Selection Technique for Vehicle Robotic Transmission in the Urban Cycle
1 Bauman Moscow State Technical University, Russia
2 Moscow Polytechnic University, Russia
* Corresponding author: sarach@yandex.ru
Environmental pollution is one of the most crucial problems in modern world. The toughening of emission standards for toxic fumes, which appear due to the combustion of fossil fuels in internal combustion engines, forces manufacturers to reduce fuel consumption, for example, via more rational use of the internal combustion engine capabilities. This paper is devoted to developing a control algorithm selection technique for economy class passenger car robotic transmission in the conditions of an urban cycle, using Lada Vesta SW Cross as a research subject. At the beginning of the paper, vehicle movement imitational mathematical model implementation, which was developed using LMS Imagine. Lab Amesim program complex. is shown. Also the main assumptions and parameters of engines, cooling systems, transmissions and chassis are given. Then imitational mathematical model verification results, which were processed by comparing movement computer simulation results with the vehicle passport data, are shown. Imitational mathematical model demonstrates the car behavior adequately and very precisely, which means it can be used for vehicle fuel efficiency research. In the main part of the paper, vehicle movement research is conducted in case of three different versions of the internal combustion engine (which has 1,4-, 1,6- and 1,8-liters volume) used in an urban cycle INRETS urbanfluide2. It is clearly shown that the lowest consumption is achieved by reducing the acceleration and braking dynamics via “early” gear shifting, and the crankshaft rotation speed at the corresponding moment of the shift has to be selected for each gear separately. Based on the research results, a switching algorithm and its selection technique, which takes the throttle valve opening degree and the type of the internal combustion engine external speed characteristic into consideration, are presented. In conclusion, this paper presents the results of vehicle movement imitational mathematical modeling in the urban cycle with a modified robotic transmission control algorithm. It is clear that this algorithm can reduce fuel consumption in the urban cycle by 12-20%, depending on the engine volume.
© The Authors, published by EDP Sciences, 2021
This is an Open Access article distributed under the terms of the Creative Commons Attribution License 4.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.