Issue |
MATEC Web Conf.
Volume 336, 2021
2020 2nd International Conference on Computer Science Communication and Network Security (CSCNS2020)
|
|
---|---|---|
Article Number | 07011 | |
Number of page(s) | 7 | |
Section | Intelligence Algorithms and Application | |
DOI | https://doi.org/10.1051/matecconf/202133607011 | |
Published online | 15 February 2021 |
An algorithm acceleration framework for correlation-based feature selection
1 College of Computer Science Technology, Nanjing University of Aeronautics and Astronautics, Nanjing, China
* Corresponding author: 18361220609@163.com
Repeated calculations lead to a sharp increase in the time of correlation-based feature selection. Incremental iteration has been applied in some algorithms to improve the efficiency. However, the computational efficiency of correlation has generally be ignored. An algorithm acceleration framework for correlation-based feature selection (AFCFS) is proposed. In AFCFS, the criterion of the feature selection will be analyzed and reconstructed based on entropy granularity, and the algorithm structure will also be adjusted accordingly. Specifically, all repeated part of calculation will be saved in mapping tables and can be accessed in next time directly, so as to further reduce the calculation repetition rate and improve the efficiency. The experimental results show that AFCFS can greatly reduce the cost time of these algorithms, and keep the corresponding classification accuracy basically unchanged.
© The Authors, published by EDP Sciences, 2021
This is an Open Access article distributed under the terms of the Creative Commons Attribution License 4.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.