Issue |
MATEC Web Conf.
Volume 336, 2021
2020 2nd International Conference on Computer Science Communication and Network Security (CSCNS2020)
|
|
---|---|---|
Article Number | 06004 | |
Number of page(s) | 5 | |
Section | Artificial Recognition and Application | |
DOI | https://doi.org/10.1051/matecconf/202133606004 | |
Published online | 15 February 2021 |
Human action recognition based on mixed gaussian hidden markov model
Beijing Information Science and Technology University, 35 North Fourth Ring Middle Road, Yayun Village Street, Chaoyang District, Beijing, China
* Corresponding author: xujiawei@bistu.edu.cn
Human action recognition is a challenging field in recent years. Many traditional signal processing and machine learning methods are gradually trying to be applied in this field. This paper uses a hidden Markov model based on mixed Gaussian to solve the problem of human action recognition. The model treats the observed human actions as samples which conform to the Gaussian mixture model, and each Gaussian mixture model is determined by a state variable. The training of the model is the process that obtain the model parameters through the expectation maximization algorithm. The simulation results show that the Hidden Markov Model based on the mixed Gaussian distribution can perform well in human action recognition.
© The Authors, published by EDP Sciences, 2021
This is an Open Access article distributed under the terms of the Creative Commons Attribution License 4.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.