Issue |
MATEC Web Conf.
Volume 336, 2021
2020 2nd International Conference on Computer Science Communication and Network Security (CSCNS2020)
|
|
---|---|---|
Article Number | 03002 | |
Number of page(s) | 10 | |
Section | Design and Control of Intelligent Robotics | |
DOI | https://doi.org/10.1051/matecconf/202133603002 | |
Published online | 15 February 2021 |
Binocular intelligent following robot based on YOLO-LITE
Nanjing University of Posts and Telecommunications School of Modern Posts, Nanjing, 210003, China
* Corresponding author: 2724531334@qq.com
In order to solve the problem that the deep neural network model is large in scale, the calculation time is too long, and the real-time performance is severely limited when combined with embedded devices, so studied the intelligent follower robot system based on YOLO-LITE algorithm combined with Raspberry Pi 3B+. The system mainly includes camera processing, target detection and other modules. Obtained the internal and external parameters of the camera through calibration, and according to these parameters to correct the binocular camera. Recognized and located the target in each frame of image, calculated the distance from the camera to the target and the center location error, and driven the car to move. The experimental results show that the following car has excellent real-time performance, the average detection frame rate can reach 20Fps, and the average detection accuracy can reach more than 80%.
© The Authors, published by EDP Sciences, 2021
This is an Open Access article distributed under the terms of the Creative Commons Attribution License 4.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.