Issue |
MATEC Web Conf.
Volume 333, 2021
The 18th Asian Pacific Confederation of Chemical Engineering Congress (APCChE 2019)
|
|
---|---|---|
Article Number | 06005 | |
Number of page(s) | 4 | |
Section | Process Systems Engineering | |
DOI | https://doi.org/10.1051/matecconf/202133306005 | |
Published online | 08 January 2021 |
Optimization of Ultrasonic-assisted Extraction of Total Phenolic Compound from Leaves of Chromolaena Odorata L. Using Response Surface Methodology
1
School of Chemical Engineering, Institute of Engineering, Suranaree University of Technology, Muang Nakhon Ratchasima 30000 Thailand
2
School of Food Technology, Institute of Agricultural Technology of Technology, Muang Nakhon Ratchasima 30000, Thailand
* Corresponding author: guntima@g.sut.ac.th
Chromolaena odorata L. or C. odorata is a weed that found in tropical continents . Leaves, roots and flowers of C. odorata have been used as medicinal plants for centuries. Preliminary phytochemical screening showed the chemical composition of its extracts having phenolic compounds such as flavonoids, saponins, tannins and steroids. The total phenolic compounds (TPC) in medicinal plants are acknowledged as biochemical activities such as antiinflammatory, antiviral, antimicrobial, antioxidant agents and etc. This work is interested in antioxidant and antimicrobial activity of an ethanolic extract of C. odorata leaves. Though, many solvents can be used to extract TPC from plants. Ethanol with ultrasound assisted extraction was selected. The response surface methodology coupled with the nonlinear solver were used to find the optimal extraction variables. The Central Composite Design (CCD) was employed as the sampling technique. Three variables are the ratio of ethanol to the dried leaves of C. odorata (X1), aqueous ethanol concentration (X2), and the extraction time (X3). The extraction conditions were fixed at 40 kHz and 60 ˚C. The maximum yield of TPC was 111.77 mg GAE/g dry extract at 57 % v/v of aqueous ethanol concentration, 43 mL of solvent/g of dried sample and 35 minutes extraction time.
© The Authors, published by EDP Sciences, 2021
This is an Open Access article distributed under the terms of the Creative Commons Attribution License 4.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.