Issue |
MATEC Web Conf.
Volume 333, 2021
The 18th Asian Pacific Confederation of Chemical Engineering Congress (APCChE 2019)
|
|
---|---|---|
Article Number | 02012 | |
Number of page(s) | 6 | |
Section | Fluid and Particle Processing | |
DOI | https://doi.org/10.1051/matecconf/202133302012 | |
Published online | 08 January 2021 |
Langevin Dynamics Calculation of Brownian Coagulation Coefficient for Spherical Equal-size Aerosol Particles in Transient Regime
1
College of Environmental Technology, Muroran Institute of Technology, 27-1 Mizumoto-cho, Muroran, Hokkaido 050-8585, Japan
2
Muroran Institute of Technology, 27-1 Mizumoto-cho, Muroran, Hokkaido 050-8585, Japan
* Corresponding author: fjmt@mmm.muroran-it.ac.jp
Coagulation coefficient of aerosol particles due to Brownian motion is an important issue to describe change in particle size distribution. Motion of aerosol particles is diffusive in continuous region (small Knudsen number; Kn), or like free molecular motion of gaseous molecular in free molecular region (large Kn). Fuchs (1964) presented an expression of coagulation coefficient in transition regime by a so-called “Flux Matching” method. In his method, transportation of particles inside of the “limiting sphere” is assumed to be like free molecular, or diffusive outside of the sphere. These days, some researchers presented coagulation coefficient of aerosol particles by direct calculation of motion of aerosol particles. They employed Langevin dynamics equation to represent the stochastic motion of aerosol particles. In this study, we developed new model to calculate the coagulation coefficient. Our model employed spherical calculation space in which one scavenging particle is in the center of it: the calculation sphere moves together with the motion of the scavenging particle. The coagulation coefficient can be calculated from the mean time between collisions and the concentration of collision particles. By using the above numerical model, we have calculated the coagulation coefficient of spherical particles of from 4 nm to 100 nm in diameter.
© The Authors, published by EDP Sciences, 2021
This is an Open Access article distributed under the terms of the Creative Commons Attribution License 4.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.