Issue |
MATEC Web Conf.
Volume 333, 2021
The 18th Asian Pacific Confederation of Chemical Engineering Congress (APCChE 2019)
|
|
---|---|---|
Article Number | 02007 | |
Number of page(s) | 5 | |
Section | Fluid and Particle Processing | |
DOI | https://doi.org/10.1051/matecconf/202133302007 | |
Published online | 08 January 2021 |
Observation of Pseudo Plume Behavior by Hydrate Sedimentary Layer Decomposition
Graduate School of Science and Technology, Niigata University, 2-8050 Ikarashi, Niigata 950-2181, Japan
* Corresponding Author: h_tajima@eng.niigata-u.ac.jp
We are focusing on the practical use of methane hydrate. For recovery and use of it as an energy resource, it is necessary to consider the possibility of clogging in the recovery pipe due to the rehydration of bubbles. The purpose of this research was to observe experimentally and evaluate theoretically the decomposition behavior of hydrate sedimentary layer and the rising behavior of bubbles generated by hydrate decomposition. Chlorodifluoromethane was used as a low pressure model gas of methane. Hydrate sedimentary layer was produced by cooling and pressurizing water in countercurrent contact with gas using a hydrate formation recovery device. The recovered hydrate was decomposed by the heating or depressurization method, without flowing water. Two theoretical rising velocities were derived from the theoretical value with using the Navier-Stokes equation or the values in consideration of the bubble shape and hydrate film existence. The experimental rising velocities of small spherical bubbles radius agreed well with the theoretical value by the Navier-Stokes equation. The relatively large elliptical bubbles showed a behavior close to the theoretical value of bubble with hydrate film. Under the pressure and temperature conditions closer to the hydrate equilibrium line, almost no generated bubbles could be identified visually.
© The Authors, published by EDP Sciences, 2021
This is an Open Access article distributed under the terms of the Creative Commons Attribution License 4.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.