Issue |
MATEC Web Conf.
Volume 328, 2020
XXII. International Scientific Conference – The Application of Experimental and Numerical Methods in Fluid Mechanics and Energy 2020 (AEaNMiFMaE-2020)
|
|
---|---|---|
Article Number | 02007 | |
Number of page(s) | 6 | |
Section | Modelling and Simulation in Fluid Mechanics and Energy | |
DOI | https://doi.org/10.1051/matecconf/202032802007 | |
Published online | 18 November 2020 |
Numerical Simulation of Reoxidation Processes
University of Žilina, Faculty of Mechanical Engineering, Department of Technological Engineering, Žilina, Slovakia
* Corresponding author: marek.bruna@fstroj.uniza.sk
Reoxidation is one of the main problem accompanying the aluminium alloy casting process. The oxide layer created on the melt surface during reoxidation is entrained into the bulk of liquid metal and “bifilms” are created. Bifilms have negative impact on cast quality and internal homogenity of final casting. Paper aim is to clarify the reoxidation phenomenon by visualization with the aid of ProCAST numerical simulation software. Experiemtnal work deals with the design of several types of gating systems (non pressurized and naturally pressurized) with vortex elements in order to determine how these elements affect the reoxidation processes. Achieved results clearly confirmed the positive effect of the naturally pressurized gating system with vortex elements. The evaluation focuses mainly on melt velocity and amount of oxides created in gating system and in mold cavity.
© The Authors, published by EDP Sciences, 2020
This is an Open Access article distributed under the terms of the Creative Commons Attribution License 4.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.