Issue |
MATEC Web Conf.
Volume 326, 2020
The 17th International Conference on Aluminium Alloys 2020 (ICAA17)
|
|
---|---|---|
Article Number | 06002 | |
Number of page(s) | 6 | |
Section | Casting & Solidification, Recycling, Fundamentals of Additive Manufacturing | |
DOI | https://doi.org/10.1051/matecconf/202032606002 | |
Published online | 05 November 2020 |
Ultrasonic processing of aluminium alloys above the liquidus: the role of Zr
1 Brunel Centre for Advanced Solidification Technology, Brunel University London, UB8 3PH Uxbridge, The United Kingdom
2 Tomsk State University, Tomsk 634050, Russian Federation
* Corresponding author: dmitry.eskin@brunel.ac.uk
Ultrasonic melt processing (USP) is gaining quite an interest in recent years due to the benefits of this technology to the melt quality and structure refinement. A number of mechanisms have been identified that govern the effects of USP at different stages of melt processing. Technologically it is advantageous to apply USP to the fluid melt rather than to a mushy solidifying alloy. In this case heterogeneous nucleation on available or activated/multiplied substrates is the main mechanism. Among these substrates, primary crystals of Al3Zr phase were shown to be potent and effective. This paper gives a review of the own research into the role of Al3Zr in structure refinement in various groups of Al alloys, from solid-solution type to hypereutectic. This overview includes the evidence of a possible eutectic reaction between Al and Al3Zr in Al-rich alloys, mechanisms of Al3Zr formation and refinement under USP (that enables these primary crystals to be active substrates for Al and some other primary phases), the role of USP in facilitating primary solidification of Al3Zr in the Al-Zr system, and the additional benefits of solute Ti presence. The paper is illustrated with the data obtained over the last 15 years of research led by the author.
© The Authors, published by EDP Sciences, 2020
This is an Open Access article distributed under the terms of the Creative Commons Attribution License 4.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.