Issue |
MATEC Web Conf.
Volume 323, 2020
10th International Conference of Advanced Models and New Concepts in Concrete and Masonry Structures (AMCM 2020)
|
|
---|---|---|
Article Number | 01002 | |
Number of page(s) | 10 | |
Section | Adnanced Models and New Concepts in Concrete Structures | |
DOI | https://doi.org/10.1051/matecconf/202032301002 | |
Published online | 05 October 2020 |
Bond load-slip behaviour of FRP bars in recycled-aggregate concrete
United Arab Emirates University, Civil and Environmental Engineering Department, Al-Ain, UAE
* Corresponding author: Ahmed.Godat@uaeu.ac.ae
This study presents an experimental program conducted to investigate the bond strength of FRP bars in recycled-aggregate concrete compared to the one in normal-aggregate concrete for the improved evaluation of results. The experimental program contains thirty six specimens tested using direct pull-out test. In this study, glass, carbon and basalt FRP bars are used with 12 mm diameter and bar bond lengths of 5d, where d is the bar diameter. The FRP bars are casted in different recycled-aggregate concrete strengths of 30, 45 and 60 MPa. The behaviour of bars in normal-aggregate concrete strength of 30 MPa is used as a benchmark and its behaviour is compared with the ones in the recycled-aggregate concrete. The impact of the concrete strength considered is identified based on the gain in the bond behaviour. The experimental results demonstrate the prospect of the recycled aggregates applied as an alternative to normal aggregates in the FRP reinforced concrete. In addition, the use of the recycled aggregate increases the bearing friction behaviour between the FRP bars and concrete.
© The Authors, published by EDP Sciences, 2020
This is an Open Access article distributed under the terms of the Creative Commons Attribution License 4.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.