Issue |
MATEC Web Conf.
Volume 322, 2020
MATBUD’2020 – Scientific-Technical Conference: E-mobility, Sustainable Materials and Technologies
|
|
---|---|---|
Article Number | 01043 | |
Number of page(s) | 8 | |
Section | E-mobility, Sustainable Materials and Technologies | |
DOI | https://doi.org/10.1051/matecconf/202032201043 | |
Published online | 14 October 2020 |
Mechanical behaviour and permeability of geopolymer mortars
1 Cracow University of Technology, Faculty of Civil Engineering, Chair of Building Materials, Warszawska 24, 31-155 Cracow, Poland
2 Nantes University - IUT Saint-Nazaire, Research Institute in Civil and Mechanical Engineering GeM – UMR CNRS 6183, 58, rue Michel Ange, 44 600 Saint Nazaire, France
* Corresponding author: Marta.Choinska@univ-nantes.fr
Geopolymers may be considered as an alternative materials to Portland cement ones, providing an opportunity to exploit industrial wastes or co-products with promising short and long-term performances in the construction field, f.ex. for reparation issues. However, these materials are porous and consequently their durability depends on the risk of intrusion of aggressive agents. In order to assess their durability, we propose to investigate in this study gas permeability of sound and mechanically loaded specimens. Loading is performed using a splitting tensile test driven by a crack opening displacement up to a level of 50 microns. Tests are performed on four types of blended fly-ash (FA) and ground granulated blast furnace slag (GGBFS) geopolymer mortars, containing four different levels of GGGBF slag in the binder: 0%, 10%, 30% and 50% wt. Results show a positive effect of blending with slag in terms of modulus of elasticity and tensile and compressive strength, as well as the permeability. However, permeability recovery after cracking is the lowest when blending is the highest.
© The Authors, published by EDP Sciences, 2020
This is an Open Access article distributed under the terms of the Creative Commons Attribution License 4.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.