Issue |
MATEC Web Conf.
Volume 322, 2020
MATBUD’2020 – Scientific-Technical Conference: E-mobility, Sustainable Materials and Technologies
|
|
---|---|---|
Article Number | 01027 | |
Number of page(s) | 8 | |
Section | E-mobility, Sustainable Materials and Technologies | |
DOI | https://doi.org/10.1051/matecconf/202032201027 | |
Published online | 14 October 2020 |
Influence of fly ash on the pore structure of mortar using a differential scanning calorimetry analysis
Kielce University of Technology, Faculty of Civil Engineering and Architecture, Al. Tysiąclecia PaństwaPolskiego 7, 25-314 Kielce, Poland
* Corresponding author: pstepien@tu.kielce.pl
In the paper a low-temperature thermoporometry using differential scanning calorimetry (DSC) was employed for analyse of influence of siliceous fly ash (FA) on pore structure of non-air-entrained mortars (pore size, connectivity). A method of interpreting a heat flux differential scanning calorimetry records in pore structure was used for this purpose. The results demonstrated that the: (i) fly ash mortars have virtually no pores inaccessible to water, unlike the mortars with plain Portland cement in which inaccessible pores constitute a significant fraction, growing with the increase in w/b; (ii) with a decrease in w/b the ink-bottle volume decreases. Fraction of this pore type is relatively larger in fly ash mortars; (iii) Siliceous fly ash increased the volume of pores greater than 8 nm, in particular in the group with radii larger than 20 nm at all w/b ratios.
© The Authors, published by EDP Sciences, 2020
This is an Open Access article distributed under the terms of the Creative Commons Attribution License 4.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.