Issue |
MATEC Web Conf.
Volume 322, 2020
MATBUD’2020 – Scientific-Technical Conference: E-mobility, Sustainable Materials and Technologies
|
|
---|---|---|
Article Number | 01021 | |
Number of page(s) | 9 | |
Section | E-mobility, Sustainable Materials and Technologies | |
DOI | https://doi.org/10.1051/matecconf/202032201021 | |
Published online | 14 October 2020 |
Ecological and technological effects of using concretes with low Portland clinker
1 Sieć BadawczaŁukasiewicz – ICIMB Kraków
2 Sieć BadawczaŁukasiewicz – ICIMB Warszawa
3 Akademia WSB – DąbrowaGórnicza
* Corresponding author: m.ostrowski@icimb.pl
Concrete with a low Portland clinker content involves the use of mineral additives as a cement component or as a additive in a concrete mix. The main factors influencing the increasing use of mineral additives in concrete technology are the advantageous development of the functional properties of the concrete mix, hardened concrete and a large impact on the ecological effects, including reduction of CO2 emissions. The use of concrete with a low Portland clinker content is part of the strategy for sustainable development of the economy. This paper describes the technological and ecological effects of using silica fly ash and granulated blast furnace slag additives in concretes with a low Portland clinker content. The cement and concrete additives used were mechanically activated, which allowed to reduce the content of Portland clinker in concrete. A new generation superplasticizer was used in the research, enabling a low water-cement ratio to be obtained. The mechanical properties and ecological effects of the production and use of concretes with a low content of Portland clinker were determined, including the reduction of CO2 emissions. Test results confirmed the very good mechanical properties of concrete with a high content of mechanically activated mineral additives. The research also showed an average of 3 times lower CO2 emissions compared to reference concretes made of CEM I Portland cement without additives.
© The Authors, published by EDP Sciences, 2020
This is an Open Access article distributed under the terms of the Creative Commons Attribution License 4.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.