Issue |
MATEC Web Conf.
Volume 321, 2020
The 14th World Conference on Titanium (Ti 2019)
|
|
---|---|---|
Article Number | 11053 | |
Number of page(s) | 6 | |
Section | Microstructure - Properties Relationships | |
DOI | https://doi.org/10.1051/matecconf/202032111053 | |
Published online | 12 October 2020 |
In-situ EBSD characterization of deformation behavior of primary alpha phase in Ti-6Al-4V
1 Department of Advanced Materials Science and Engineering, Kyushu University, Fukuoka 8 168580, Japan
Corresponding author: Wansong Li
Email: li.wansong.136@m.kyushu-u.ac.jp
Uniaxial tension experiments and electron back-scatter diffraction were performed on a bimodal Ti-6Al-4V alloy to study the deformation behavior of primary hcp-Ti (αp). It was found that the obtained tensile strength and elongation of the studied Ti-6Al-4V from the in-situ tensile test are higher than of which derived from the regular tensile test. The strain could be accommodated by the activation of slip systems and by grain rotations during the deformation. The prismatic slip is the primary slip mode of αp. According to kernel average misorientation analysis, we found that the dislocations mainly distributed near grain boundaries and subgrain boundaries, and partially located around slip lines. Calculated rotation angles and average rotation rates show that the rotation heterogeneity occurred among grains and subgrains.
Key words: Electron backscatter diffraction / Microstructure / Deformation / Grain rotation
© The Authors, published by EDP Sciences, 2020
This is an Open Access article distributed under the terms of the Creative Commons Attribution License 4.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.