Issue |
MATEC Web Conf.
Volume 321, 2020
The 14th World Conference on Titanium (Ti 2019)
|
|
---|---|---|
Article Number | 11022 | |
Number of page(s) | 7 | |
Section | Microstructure - Properties Relationships | |
DOI | https://doi.org/10.1051/matecconf/202032111022 | |
Published online | 12 October 2020 |
Change of microstructure and properties of dual titanium alloy join interface in hot working history
School of materials and engineering, Northwestern Polytechnic University, Xi’an, China, 710072
In order to get workpiece with high tensile stresses in bore region and high temperature duration, creep strength in outskirts, the dual alloy samples made of high temperature titanium alloy Ti60 and high strength titanium alloy Ti6246 had been joined by inertia friction welding(IFW). Then these samples were isothermal forged at 9400c and 9750c, and different heat treatment followed. Changes of microstructure and properties of dual titanium alloy join interface in hot working history were examined at this article. The results show equiaxed α structure varied into basketweave structureat at as-welded join interface, especially a character of widmannstaten structure emerged from Ti6246 alloy side heat effect region, after gradient heat treatment. Immersed ultrasonic testing prove deformation can availably eliminate weld defect through metal on two side of weld line deeper embedding each other. The results of properties test also show the join strength of dual titanium alloy through isothermal deformation and gradient heat treatment are better than that of as-welded samples. Tensile strength, yield strength, elongating rate, reduction in area of sample at 5500c also increase 51 to145 MPa, 37 to 101 MPa, 1.6% to 5.3%, 15.3% to 3.3% than that of as-welded samples respectively. The rupture life of Ti60/Ti6246 dual titanium samples with join interface can sustain to go beyond 100 hours at 5500c and 320 PMa stress.
Key words: Ti60/Ti6246 dual titanium alloy / isothermal deformation / gradient heat treatment / microstructure / property
© The Authors, published by EDP Sciences, 2020
This is an Open Access article distributed under the terms of the Creative Commons Attribution License 4.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.