Issue |
MATEC Web Conf.
Volume 321, 2020
The 14th World Conference on Titanium (Ti 2019)
|
|
---|---|---|
Article Number | 11018 | |
Number of page(s) | 7 | |
Section | Microstructure - Properties Relationships | |
DOI | https://doi.org/10.1051/matecconf/202032111018 | |
Published online | 12 October 2020 |
Vacuum superplastic deformation behavior of a near-alpha titanium alloy TA32
1 Division of Titanium alloys, Institute of Metal Research, Chinese Academy of Sciences, 72 Wenhua Road, Shenyang 110016, China
2 School of Materials Science and Engineering, University of Science and Technology of China, Hefei 230026, China
3 Beijing Electro-Mechanical Engineering Institute, Beijing 100074, China
Corresponding author: Zhiyong Chen, E-mail: zhiyongchen@imr.ac.cn
TA32 is a heat-resistant titanium alloy developed for superplastic forming in fabrication of near-space supersonic aerocraft. Clarification of superplastic deformation behavior is important to the optimization of forming parameters. Superplastic tensile test was conducted in vacuum to eliminate the effect of surface oxidation on experimental data, the test temperature and strain rate varied from 900oC to 960oC and 5.32×10-4 to 2.08×10-2s-1, respectively. It was observed that the size of equiaxed α grains exhibited a trend of coarsening with the increase of temperature and decrease of strain rate. Textures of deformed specimens exhibited random distribution with a decreased texture intensity compared with the as-received materials. The superplastic deformation mechanism of TA32 alloy was dominated by grain boundary sliding, which is accommodated by grain rotation and dynamic recrystallization.
© The Authors, published by EDP Sciences, 2020
This is an Open Access article distributed under the terms of the Creative Commons Attribution License 4.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.